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The field of Diophantine approximations deals with approximations of real numbers by
rationals. This handout surveys topics related to the field of Diophantine approximation that
may appear in Olympiad competitions. Some problems in this handout are taken from Problems
From The Book and Mark Sellke’s handout on Farey sequences at MOP 2017. The final section
of this handout is taken from Alfred van der Poorten’s report A Proof that Euler missed. For
further reading, I suggest J.W.S. Cassels’s Introduction to Diophantine Approximations.

1 Approximations

Notation. For a real number α, ‖α‖ is the distance from α to the nearest integer.

0. Observe that ‖qα‖ 6 x is equivalent to the existence of an integer p such that∣∣∣∣α− p

q

∣∣∣∣ 6 x

q
.

1. (Dirichlet’s approximation theorem) For any real number α and any positive integer N ,
there exists an integer 1 6 q 6 N such that

‖qα‖ 6 1

N
.

2. Show that for any irrational number ξ, there are infinitely many positive integers q such
that

‖qα‖ 6 1

q
,

using (i) Dirichlet’s approximation theorem and (ii) continued fractions.

3. (Iran 2004) Show that for all ε > 0, there exists a positive integer q such that

‖q2α‖ 6 ε.

†† 4. (to quote ThE-dArK-lOrD: some article in some Darij Grinburg course at MIT. Also note
that I do not have a solution to this problem, nor any means to verify that it’s true)

Show that for all ε > 0, there exists a positive integer N with the following property: For
all real α, there is an integer q with 1 6 q 6 N that

‖q2α‖ 6 ε.
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5. (Simultaneous version of Dirichlet’s theorem) For any real numbers α1, α2, . . . , αd and any
positive integer N , there exists an integer 1 6 q 6 N such that for any i = 1, 2, . . . , d,

‖qαi‖ 6
1

N
1
d

.

† 6. (Moscow 1949) There are 2n+ 1 real numbers such that when we remove any of them, it
is possible to divide the remaining 2n numbers into two groups of n numbers with equal
sum. Prove that all 2n+ 1 numbers must be equal.

† 7. (China MO 2018) Let q be a positive integer which is not a perfect cube. Prove that there
exists a positive constant C such that for all natural numbers n, one has

{nq
1
3 }+ {nq

2
3 } > Cn−

1
2

where {x} denotes the fractional part of x.

2 Distribution of {nα}
8. (Kronecker’s theorem) For any irrational α, {nα} is dense in [0, 1].

9. (Thailand TST 2016) Prove that for all prime numbers p and positive integers k, there
exists a positive integer n such that the decimal representation of pn contains a string of
k consecutive equal digits.

10. Show that for every ε > 0, there is a positive integer n such that 0 < sinn < ε.

11. (Romania TST 2003) Prove that the sequence (bn
√

2003c)n>1 contains arbitrarily long
geometric progressions with arbitratily large ratio.

12. (Tuymaada, unknown year) Prove that the sequence consisting of the first digit of 2n+3n

is not periodic.

In fact, we can say more than Kronecker’s theorem:

Theorem. For any irrational α, {nα} is equidistributed in [0, 1].

13. Let s be a positive integer. What is the density of the set of positive integers n for which
2n, written in decimal, begins with s? Find some values of s where this is provable without
invoking the theorem above.

The previous problem is related to Benford’s law, which is an observation about the fre-
quency distribution of leading digits in many real-life sets of numerical data. In particular, it
shows that Benford’s law applies to the dataset {2n} as well.

† 14. (Tuymaada 2002) A real number α is given. The sequence n1 < n2 < n3 < . . . consists
of all the positive integral n such that {nα} < 1

10 . Prove that there are at most three
different numbers among the numbers n2 − n1, n3 − n2, n4 − n3, . . .
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3 Farey sequences

Definition. The Farey sequence of order n, denoted by Fn, is the sequence of completely
reduced fractions between 0 and 1 with denominator at most n in order.

15. If fractions a
b ,

c
d are consecutive terms in Fn then b+ d > n.

16. a) If fractions a
b ,

c
d are consecutive terms in Fn then bc− ad = 1.

b) If fractions a
b ,

c
d satisfy bc− ad = 1 then there exists n such that a

b ,
c
d are consecutive

terms in Fn.

17. a) If a
b ,

p
q ,

c
d are consecutive terms in Fn then p

q = a+c
b+d . We call p

q the mediant of a
b and

c
d .

b) If a
b ,

c
d are consecutive terms in Fn then the first term to be inserted between them

is their mediant.

18. Show that

lim
n→∞

|Fn|
n2

=
3

π2
.

19. (Nordic MO 2011) Show that for any integer n > 2 the sum of the fractions 1
ab , where a

and b are relatively prime positive integers such that a < b 6 n and a+ b > n, equals 1
2 .

20. (Google Code Jam World Finals 2016) For an irrational α ∈ (0, 1), put a circle of radius
α around each non-zero lattice point (x, y) 6= (0, 0) in the plane. In terms of α, which
circles are visible for an observer at (0, 0)? (A circle is visible if there exists a point p on
it that is visible, meaning the line segment from (0, 0) to p does not intersect any other
circle.)

21. A Ford circle is a circle with center (pq ,
1

2q2
) and radius 1

2q2
where p, q are coprime integers.

Prove that any two disjoint Ford circles are either disjoint or tangent.

22. (Hurwitz’s theorem)

a) Prove that for any irrational number ξ, there are infinitely many rational numbers
m
n such that ∣∣∣ξ − n

m

∣∣∣ < 1√
5m2

.

b) Show that
√

5 is the best possible constant, that is, the statement above is false if
we replace

√
5 by any number A >

√
5.

23. (IMO SL 2016) Consider fractions a
b where a and b are positive integers.

a) Prove that for every positive integer n, there exists such a fraction a
b such that√

n 6 a
b 6
√
n+ 1 and b 6

√
n+ 1.

b) Show that there are infinitely many positive integers n such that no such fraction a
b

satisfies
√
n 6 a

b 6
√
n+ 1 and b 6

√
n.

24. (Taiwan TST 2016) Let k be a positive integer. A sequence a0, a1, . . . , an;n > 0 of positive
integers satisfies the following conditions:
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(i) a0 = an = 1;

(ii) 2 ≤ ai ≤ k for each i = 1, 2, . . . , n− 1;

(iii) For each j = 2, 3, . . . , k, the number j appears φ(j) times in the sequence a0, a1, . . . , an,
where φ(j) is the number of positive integers that do not exceed j and are coprime
to j;

(iv) For any i = 1, 2, . . . , n−1, gcd(ai, ai−1) = 1 = gcd(ai, ai+1), and ai divides ai−1+ai+1.

Suppose there is another sequence b0, b1, ..., bn of integers such that bi+1

ai+1
> bi

ai
for all

i = 0, 1, ..., n− 1. Find the minimum value of bn − b0.

25. (TSTST 2013) A finite sequence of integers a1, a2, . . . , an is called regular if there exists
a real number x satisfying

bkxc = ak for 1 6 k 6 n.

Given a regular sequence a1, a2, . . . , an, for 1 6 k 6 n we say that the term ak is forced if
the following condition is satisfied: the sequence

a1, a2, . . . , ak−1, b

is regular if and only if b = ak. Find the maximum possible number of forced terms in a
regular sequence with 1000 terms.

† 26. (HMIC 2015) Let m,n be positive integers with m > n. Let S be the set of pairs (a, b)
of relatively prime positive integers such that a, b 6 m and a + b > m. For each pair
(a, b) ∈ S, consider the nonnegative integer solution (u, v) to the equation au − bv = n
chosen with v > 0 minimal, and let I(a, b) denote the (open) interval (v/a, u/b).

Prove that I(a, b) ⊆ (0, 1) for every (a, b) ∈ S, and that any fixed irrational number
α ∈ (0, 1) lies in I(a, b) for exactly n distinct pairs (a, b) ∈ S.

† 27. (IMO 2013/6) Let n > 3 be an integer, and consider a circle with n + 1 equally spaced
points marked on it. Consider all labellings of these points with the numbers 0, 1, . . . , n
such that each label is used exactly once; two such labellings are considered to be the
same if one can be obtained from the other by a rotation of the circle. A labelling is called
beautiful if, for any four labels a < b < c < d with a + d = b + c, the chord joining the
points labelled a and d does not intersect the chord joining the points labelled b and c.

Let M be the number of beautiful labelings, and let N be the number of ordered pairs
(x, y) of positive integers such that x+ y 6 n and gcd(x, y) = 1. Prove that

M = N + 1.

†† 28. (IMO SL 2013) Let ν be an irrational positive number, and let m be a positive integer.
A pair of (a, b) of positive integers is called good if

a dbνe − b baνc = m.

A good pair (a, b) is called excellent if neither of the pair (a− b, b) and (a, b− a) is good.

Prove that the number of excellent pairs is equal to the sum of the positive divisors of m.
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4 Irrationality measure

Definition. The irrationality measure of a real number x, denoted by µ(x), is the least upper
bound of real numbers µ such that the inequality

0 <

∣∣∣∣x− p

q

∣∣∣∣ < 1

qµ

holds for infinitely many pairs of positive integers (p, q).

29. For any rational number r, µ(r) = 1. For any irrational number ξ, µ(ξ) > 2.

30. (adapted from InfinityDots #105) Determine all positive integers d for which there exists
a positive integer c and a polynomial P ∈ Z[x] with degree d such that the sum

1

c
+

1

P (c)
+

1

P (P (c))
+ · · ·

converges to a rational number.

†† 31. (Liouville’s theorem) If α is a root of a polynomial f ∈ Z[x] of degree n then µ(α) 6 n.

32. Give an explicit example of a transcendental number, with proof of its transcendentality.

In fact, Liouville’s theorem has now been improved, and the irrationality measure of any
algebraic number is now known:

Theorem (Thue-Siegel-Roth). The irrationality measure of any irrational algebraic number is
exactly 2.

Finally, I’d like to close the handout with an outline of an amazing proof of an amazing
theorem – Apery’s theorem. First, we consider the recurrence relation (for n > 2)

n3un + (n− 1)3un−2 = (34n3 − 51n2 + 27n− 5)un−1.

Now define the sequences

cn,k =

n∑
m=1

1

m3
+

k∑
m=1

(−1)m−1

2m3
(
n
m

)(
n+m
m

) , bn =

n∑
k=0

(
n

k

)2(n+ k

k

)2

, an =

n∑
k=0

cn,k

(
n

k

)2(n+ k

k

)2

.

†† 33. Prove that the sequences (an) and (bn) satisfy the above recurrence relation.

† 34. Prove that for all integers n, 2an · lcm(1, 2, . . . , n)3 is an integer.

† 35. Prove that for all integers n,∣∣∣∣ζ(3)− an
bn

∣∣∣∣ =
∞∑

k=n+1

6

k3bkbk−1
= O(b−2n ),

where ζ(3) =
∑∞

n=1
1
n3 .

†† 36. Use the recurrence relation to show bn = O((1 +
√

2)4n), and use analytic number theory
to show that lcm(1, 2, . . . , n) = O(en+ε) for all ε > 0.

37. Deduce that ζ(3) is irrational from the fact that (1 +
√

2)4 > e3.
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