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Abstract

Course notes for Hotchkiss class MA662 (Multivariable Calculus). Proofs in here are not guaran-
teed to be rigorous. The sections are split by class tests. The textbook used is Hubbard and Hubbard’s
Vector Calculus, Linear Algebra, and Differential Forms: A Unified Approach, 5th ed.

Multivariable calculus is the same as single variable calculus done several times.
— Dr. Weiss, January 14, 2019
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1 Topology
1.1 Topology of R
Definition 1.1 (Upper and lower bounds).
Let X ⊆ R. Then u ∈ R is called an upper bound of X if x ⩽ u for all x ∈ X , and ℓ ∈ R is called a
lower bound if x ⩾ ℓ for all x ∈ X .

It is an axiomatic property of R that each subset of R has a least upper bound and, likewise, each
subset that is bounded below has a greatest lower bound.

Definition 1.2 (Supremum and infimum).
Let X ⊆ R be bounded. Then the supremum y = supX is the least upper bound of X , that is, for
any upper bound y′ of X , y′ ⩾ y. Likewise, the infimum z = infX is the greatest lower bound of
X , that is, for any lower bound z′ of X , z′ ⩽ z.

Definition 1.3 (Maximum and minimum).
For anX ⊆ R, if supX ∈ X , then we call it the maximum ofX (denoted maxX) and if infX ∈ X ,
we call it the minimum of X (denoted minX).

Example 1.4. For the open interval A = (0, 1), supA = 1, infA = 0, and maxA,minA do not
exist. For the closed interval A = [0, 1], supA = maxA = 1 and infA = minA = 0.

Proposition 1.5. If X ⊆ R is bounded above then y = supX iff
(i) y is an upper bound of X , and
(ii) for all ϵ > 0, there exists x ∈ X such that x > y − ϵ.

Proof. (⇒) Suppose y = supX . (i) follows by definition. If (ii) is false then there is an ϵ > 0 such
that for all x ∈ X , x ⩽ y−ϵ, so y−ϵ < y is also an upper bound ofX , which contradicts y = supX .

(⇐) By (i) y is an upper bound of X . Suppose there is a smaller upper bound y′ < y of X .
Consider ϵ = y − y′. (ii) implies the existence of x ∈ X such that x > y − ϵ = y′, so y′ is not an
upper bound of X , a contradiction. Hence y = supX . ■

Proposition 1.6. Let X be bounded below. Show that infX = − sup(−X), where −X = {−x |
x ∈ X}.

Proof. As X is bounded below, −X is bounded above, so sup−X exist. Call it y. By definition, for
any x ∈ −X , y ⩾ x, and for any upper bound y′ of −X , y ⩽ y′. Therefore, for any x ∈ X , −y ⩽ x,
so −y is a lower bound of X .

Suppose that z is a lower bound of X . Then, z ⩽ x for all x ∈ X , so −z ⩾ x for all x ∈ −X ,
so −z is an upper bound of −X , and hence y ⩽ −z, in turn implying −y ⩾ z. Therefore, −y is the
infimum of X , so − sup(−X) = infX . ■

Proposition 1.7. If A,B are bounded subsets of R, then A ∪B is bounded and

supA ∪B = sup{supA, supB}.

Proof. Let s = supA, t = supB, and WLOG, suppose that s ⩾ t. Since s ⩾ a for any a ∈ A and
s ⩾ t ⩾ b for any b ∈ B, s is an upper bound of A ∪ B so A ∪ B is bounded above. (Similarly, it
is also bounded below, and thus bounded.) Now let ϵ > 0. From Prop 1.5, there exists a ∈ A such
that a > s − ϵ. Therefore, for all ϵ > 0, there exists a ∈ A ∪ B such that a > s − ϵ, therefore
s = supA ∪B. ■
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1.2 Open and closed sets
Definition 1.8 (Neighborhoods).
Let x ∈ Rn be a point, and ϵ > 0. Then the ϵ-neighborhood of x is defined by

Bϵ(x) = {y ∈ Rn | |x− y| < ϵ}.

Definition 1.9 (Interiors and boundaries).
Let X ⊆ Rn and x ∈ Rn. Then x is called

• an interior point of X if there exists an ϵ > 0 such that Bϵ(x) ⊆ X .
• a boundary point of X if for all ϵ > 0, Bϵ(x) ∩X ̸= ∅ and Bϵ(x) ∩Xc ̸= ∅.
• an exterior point of X if it is an interior point of Xc.

The interior X̊ or X◦ of X is the set of all interior points of X , and the boundary ∂X of X is the set
of all boundary points of X .

Definition 1.10 (Open and closed).
A set X ⊆ Rn is called

• open if it only consists of interior points, that is, X̊ = X

• closed if its complement is open.

As a result, a set X is open if it contains none of its boundary points, and closed if it contains all
of its boundary points.

Also, this is not a dichotomy: ∅ and Rn are clopen, that is, both open and closed in Rn. Lots of
sets are neither open nor closed.

Exercise 1.11 (1.5.1 in book). For each of the following subsets, state whether it is open or closed
(or both or neither), and say why.

a. {x ∈ R | 0 < x ⩽ 1} as a subset of R.
b. {(x, y) ∈ R2 |

√
x2 + y2 < 1} as a subset of R2.

c. the interval (0, 1] as a subset of R
d. {(x, y) ∈ R2 |

√
x2 + y2 ⩽ 1} as a subset of R2.

e. {x ∈ R | 0 ⩽ x ⩽ 1} as a subset of R.
f. {(x, y, z) ∈ R3 |

√
x2 + y2 + z2 = 1 and x, y, z ̸= 0} as a subset of R3

g. the empty set as a subset of R

Solution. a. neither: the boundary points are {0, 1}, but 0 is not in the set while 1 is in the set.
b. open: it does not contain any of the boundary points {(x, y) ∈ R2 |

√
x2 + y2 = 1}

c. neither: see a.
d. closed: it contains all of its boundary points {(x, y) ∈ R2 |

√
x2 + y2 = 1}

e. closed: the boundary points {0, 1} are both in the set.
f. neither: it does not contain the boundary point 0 but it contains the boundary points {(x, y, z) ∈

R3 |
√
x2 + y2 + z2 = 1}.

g. clopen: the empty set is both open and closed.

Exercise 1.12 (1.5.2 in book). For each of the following subsets, state whether it is open or closed
(or both or neither), and say why.
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a. (x, y)-plane in R3

b. R ⊂ C

c. the line x = 5 in the
(x, y)-plane

d. (0, 1) ⊂ C

e. Rn ⊂ Rn

f. the unit sphere in R3

Solution. a. closed: it is its own boundary
b. closed: also its own boundary
c. closed: see above
d. neither: it contains 0.5 but not 0, and both are boundary points.
e. clopen
f. closed: the shell is its own boundary

Exercise 1.13 (1.5.5, book p.102). For each of the following subsets of R and R2, state whether it is
open or closed (or both or neither), and prove it.

a. {(x, y) ∈ R2 | 1 < x2 + y2 < 2}

b. {(x, y) ∈ R2 | xy ̸= 0}

c. {(x, y) ∈ R2 | y = 0}

d. Q ∈ R

Solution. a. open. Let p ∈ A = {(x, y) ∈ R2 | 1 < x2 + y2 < 2}, so 1 < |p| <
√
2.

Choose ϵ = min{|p| − 1,
√
2 − |p|}/2. By the triangle inequality, for any point q ∈ Bϵ(p),

1 < |p| − ϵ < |q| < |p| + ϵ <
√
2, so q ∈ A, hence Bϵ(p) ⊂ A. Therefore all points p ∈ A

are interior points, so A does not contain any of its boundary, so p is open.
b. open. Let p = (a, b) ∈ X = {(x, y) ∈ R2 | xy ̸= 0}, so |a|, |b| > 0. Choose ϵ =

min{|a|, |b|}/2. For any point q = (u, v) ∈ Bϵ(p), |u| > |a| − ϵ > 0 and |v| > |b| − ϵ > 0,
so q ∈ X , therefore Bϵ(p) ⊂ X . Hence all points p ∈ X are interior points, so X is open.

c. closed. Consider its complement C = {(x, y) ∈ R2 | y ̸= 0}. For any p = (a, b) ∈ C,
consider ϵ = |b|/2. For any point q = (u, v) ∈ Bϵ(p), |v| > |b| − ϵ > 0 so q ∈ C, so
Bϵ(p) ⊂ C, so C is open. Therefore Cc = {(x, y) ∈ R2 | y = 0} is closed.

d. neither. Since both the rationals and irrationals are dense in R, for any x ∈ R and ϵ > 0, Bϵ(x)

contains both rationals and irrationals. Therefore R is the boundary of Q ∈ R, so Q contains
some, but not all, of its boundary, and hence Q is ajar1.

Exercise 1.14 (1.5.3 in book). Prove the following statements for open subsets of Rn:
a. Any union (finite, countable, uncountable) of open sets is open
b. A finite intersection of open sets is open
c. An infinite intersection of open sets is not necessarily open

Solution. a. Let our union be U =
∪
Sx, and let u ∈ U . Therefore u is in one of the open sets

Sx, and so u is an interior point of Sx. Hence there is an ϵ > 0 such that Bϵ(u) ⊂ Sx ⊂ U ,
so u is an interior point fo U . Therefore, U is open.

b. Let our intersection be Z =
∩n

i=1 Si. Suppose z ∈ Z, so z is in Si for all i = 1, . . . , n. Since
Si’s are all open, there are ϵi > 0 such that Bϵi(z) ⊂ Si for each i. Take ϵ = min ϵi. It follows
that Bϵ(z) ⊂ Bϵi(z) ⊂ Si for all i, so Bϵ(z) ⊂ Z, so z is an interior point. Therefore, Z is
open.

1This is not a real mathematical term
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c. The sets Sn = (− 1
n ,

1
n ) for n = 1, 2, . . . are all open, but their intersection is {0}, which is

not open because it contains 0, which is its own boundary.

Theorem 1.15. The closure X of X , defined as the union of X and ∂X , is the smallest closed set that
containsX , in the sense that no proper subset ofX is both closed and containsX .

Proof. If X is closed, we are done. Otherwise, assume that Y ⊂ Rn is closed with

X ⫋ Y ⊆ X.

We claim that Y = X . Suppose Y ̸= X , so there is a point x ∈ X \ Y . As x ∈ X , for any ϵ > 0,
Bϵ(x) contains points in X , and therefore, in Y . As x ̸∈ Y , Bϵ(x) also contain a point x not in Y .
Therefore, x is in the boundary of Y but not in Y itself, so Y is not closed, which is a contradiction.2
■

Exercise 1.16. LetA,B be sets inR. Show thatA◦ ⊆ A, (A◦)◦ = A◦, and that (A∩B)◦ = A◦∩B◦.
Show also that A◦ ∪B◦ ⊆ (A ∪B)◦, and give an example that the inclusion may be proper.

Solution. • For any a ∈ A◦, there is an ϵ > 0 such that Bϵ(a) ⊂ A, so a ∈ Bϵ(a) ⊂ A.
Therefore, A◦ ⊆ A.

• We already know that (A◦)◦ ⊆ A◦, so it suffices to show that A◦ ⊆ (A◦)◦. Let a ∈ A◦,
so there is an ϵ > 0 such that Bϵ(a) ⊆ A. Consider a point p ∈ Bϵ/2(a). By the triangle
inequality, Bϵ/2(p) ⊆ Bϵ(a) ⊆ A, p ∈ A◦. Hence, Bϵ/2(a) ⊂ A◦, so a ∈ (A◦)◦. Therefore,
A◦ ⊆ (A◦)◦.

• If c ∈ (A ∩ B)◦, then there is an ϵ > 0 such that Bϵ(c) ∈ A ∩ B. Therefore Bϵ(c) ∈ A,
implying c ∈ A◦, and Bϵ(c) ∈ B, implying c ∈ B◦. On the other hand, if c ∈ A◦ and
c ∈ B◦, there exists ϵa, ϵb > 0 such that Bϵa(c) ⊆ A and Bϵb(c) ⊆ B. Take ϵ = min{ϵa, ϵb}
to get Bϵ(c) ⊆ Bϵa(c) ⊆ A and Bϵ(c) ⊆ Bϵb(c) ⊆ B, so Bϵ(c) ⊆ A ∩ B, which means
c ∈ (A ∩B)◦.

• Let c ∈ A◦ ∪ B◦, so c ∈ A◦ or c ∈ B◦. WLOG suppose the former is true. Then, there
is an ϵ > 0 such that Bϵ(c) ⊆ A ∪ B, so c ∈ (A ∪ B)◦. However, if we take, for example,
A = [−1, 0] andB = [0, 1], it follows thatA◦∪B◦ = (−1, 0)∪(0, 1) ̸= (−1, 1) = (A∪B)◦.
■

1.3 Sequences and limits
The definition for convergence in Rn is the same as in R:

Definition 1.17.
A sequence {ai} of points in Rn converges to a ∈ Rn if for all ϵ > 0 there exists an M such that for
all m > M , |am − a| < ϵ (or equivalently, am ∈ Bϵ(a).)

Proposition 1.18. A sequence m 7→ am with am ∈ Rn converges iff its individual components all
converge.

2 Alternate proof: x ∈ Rn − Y which is open so there exists an ϵ > 0 such that Bϵ(x) ⊆ Rn − Y so Bϵ(x) ⊆ Rn − X

which contradicts x ∈ X .
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Proof. (⇒) Write a =
(
a1 a2 · · · an

)T
, am =

(
am,1 am,2 · · · am,n

)T
. For any k, given

an ϵ > 0, there is an M such that for all m > M , |am,k − ak| ⩽ |am − a| < ϵ, so {am,k} converges
to ak.

(⇐) Define am,k as above; let {am,k} converge to ak; a =
(
a1 a2 · · · an

)T
. Fix ϵ > 0.

For any k, there is an Mk such that for all m > Mk, |am,k − ak| ⩽ ϵ/
√
n. Choose M = maxMk.

This gives

|am − a| =

√√√√ n∑
k=1

(am,k − ak)2 <

√
nϵ

n
= ϵ

so {am} converges to a. ■

Proposition 1.19. If a sequence i 7→ ai of points in Rn converges to both a and b, then a = b.

Proof. For any ϵ > 0, there is anMa such that for allm > Ma, |am − a| < ϵ/2 and also anMb such
that for all m > Mb, |am − b| < ϵ/2. Therefore there is an M(ϵ) := max{Ma,Mb}+ 1 such that

|aM(ϵ) − a| < ϵ

2
and |aM(ϵ) − b| < ϵ

2
,

therefore, by the triangle inequality, |a − b| < ϵ. As this holds for all ϵ > 0, |a − b| = 0, and hence
a = b. ■

Next is an important fact linking limits to closed sets.

Proposition 1.20 (Closed sets contain all limit points). a. Let i → xi be a sequence in a closed
set C ⊂ Rn converging to x ∈ Rn. Then x ∈ C.

b. Conversely, if every convergent sequence in a set C ⊂ Rn converges to a point in C, then C is
closed.

Proof. a. If x ̸∈ C, then x ∈ Cc which is open, so there exists r > 0 such that Br(x0) ⊂ Cc.
Then for all m we have |xm − x| ⩾ r. But by the definition of convergence, for any ϵ > 0 we
have |xm − x| < ϵ for m large enough. This is a contradiction when ϵ = r.

b. If C is not closed then there is a boundary point x of C that is not in C. Since for all ϵ > 0,
Bϵ(x) contains a point x(ϵ) in C, we can find a sequence, say,

x(1), x(1/2), x(1/4), · · ·

that converges to x ̸∈ C. ■

Definition 1.21.
If a sequence {ai} converges to a ∈ R then we say a is the limit of {ai}, denoted by

a = lim
n→∞

an.

Definition 1.22.
Let X be a subset of Rn and x0 a point in X . A function f : X → Rm has the limit a at x0, written

lim
x→x0

f(x) = a,

if for all ϵ > 0 there exists δ > 0 such that for all x ∈ X ,

|x − x0| < δ =⇒ |f(x)− a| < ϵ.
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Limits behave as you’d expect on Rn (can be added, multiplied by a scalar limit, preserve dot
products) with one caveat: the limit has to be the same when approach it from all directions, so
instead of left and right limit, there are infinitely many paths.

Similar to convergent sequences, we can break limits into components.

Proposition 1.23. The limit of a function at a point exists iff the limit of all components of the
function at that point exists.

Proof. Left as an exercise for the reader.

Exercise 1.24 (1.5.14 in book). State whether the following limits exist, and prove it.3

a. lim
(x,y)→(1,2)

x2

x+ y

b. lim
(x,y)→(0,0)

√
|x|y

x2 + y2

c. lim
(x,y)→(0,0)

√
|xy|√

x2 + y2

d. lim
(x,y)→(1,2)

x2 + y3 − 3

Solution. a. The limit exists, and is 12

1+2 = 1
3 . The proof is straightforward.

b. For each t > 0 and for (x, y) = (t, t),√
|x|y

x2 + y2
=
t1.5

2t2
=

1

2
√
t
.

As t→ 0, this goes to +∞, so the limit does not exist.
c. Fix a s > 0. For each t > 0 and for (x, y) = (t, st),√

|xy|√
x2 + y2

=
t
√
s

t
√
1 + s2

=
1√

1 + s2
.

Therefore, as we approach (0, 0) along lines y = sx for different values of s, say s = 0 and 1,√
|xy|√

x2+y2
goes to different values, so the limit does not exist.

d. The limit exists, and is 12 + 23 − 3 = 6. The proof is straightforward.

1.4 Continuity
Definition 1.25.
Let X ⊂ Rn. A mapping f : X → Rm is continuous at x0 ∈ X if

lim
x→x0

f(x) = f(x0);

f is continuous onX if it is continuous at every point ofX . Equivalently, f : X → Rm is continuous
at x0 ∈ X iff for every ϵ > 0, there exists δ > 0 such that

|x − x0| < δ =⇒ |f(x)− f(x0)| < ϵ.

Approaching x0 continuously from all directions is pretty hard—thankfully, just considering se-
quences is enough.

3The points
(
x
y

)
are written (x, y) to preserve space.

8



Proposition 1.26. Let X ⊂ Rn and x ∈ X . mapping f : X → Rm is continuous at x iff for every
sequence x1, x2, . . . approaching x,

lim
n→∞

f(xn) = f(x)

Continuity has some nice properties: it is preserved under addition, scalar multiplication, division
(not by zero), multiplication.

As a result, polynomials are continuous on all of Rn, and rational functions are continuous on
the subset of Rn where the quotient does not vanish.

Exercise 1.27 (1.5.21 in book). For the following functions, can you choose a value for f at (0, 0) to
make the function continuous at the origin?

a. f(x, y) = 1

x2 + y2 + 1

b. f(x, y) =
√
x2 + y2

|x|+ |y|1/3

c. f(x, y) = (x2 + y2) ln(x2 + 2y2)

d. f(x, y) = (x2 + y2) ln |x+ y|

Solution. a. f is a rational function that does not vanish, so it is already continuous and we can
choose f(0, 0) = 1

02+02+1 = 1.
b. Approaching (0, 0) on the line x = 0 gives f(0, y) = |y|2/3 which goes to +∞ as y → 0 so a

limit does not exist, and we cannot make f continuous.
c. For any p = (x, y) = (r, θ) with r < 1,

r2 ln r2 = (x2 + y2) ln(x2 + y2) < f(x, y) ⩽ 0

so 0 = limr→0 −r2 ln r2 ⩽ limr→0 f(p) ⩽ 0, squeezing limr→0 f(p) to 0, so we define
f(0, 0) = 0.

d. The function goes to −∞ among the line y = −x, so the limit does not exist.

Exercise 1.28 (1.5.16 in book). a. Let D∗ ∈ R2 be the region 0 < x2 + y2 < 1, and let f :

D∗ → R be a function. What does the following assertion mean?

lim
(x,y)→(0,0)

f(x, y) = a

b. For the following two functions, defined on R2 − {0}, either show that the limit exists at 0
and find it, or show that it does not exist:

f(x, y) =
sin(x+ y)√
x2 + y2

g(x, y) = (|x|+ |y|) ln(x2 + y4)

Solution. a. As we wander closer to hole in the disc, f approaches a.
b. For f , the limit does not exist: if we approach (0, 0) on the line x = y from x > 0,

lim
x→0+

f(x, x) = lim
x→0

sin 2x√
2x

= lim
x→0

2 cos 2x√
2

=
√
2,

however, if we approach (0, 0) on the line x = −y,

lim
x→0

f(x,−x) = lim
x→0

0√
2x

= 0.
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For g, the limit exists and is zero. For any p = (x, y), define s = |x| + |y|. Then, for s (and
thus |x|, |y|) small enough,

1 > x2 + y4 > x4 + y4 ⩾ s4

8
, 4

so 0 > ln(x2 + y4) > 4 ln s− ln 8, so

s(4 ln s− ln 8) < g(x, y) < 0.

Taking s→ 0 gives lim(x,y)→(0,0) = 0.

Digression 1.29 (Lp norms). The p-norm or Lp-norm of v =
[
v1 v2 · · · vn

]
is defined by

∥v∥p = (|v1|p + |v2|p + · · ·+ |vn|p)
1
p

When p = ∞ this becomes

∥v∥∞ = max{|v1|, |v2|, . . . , |vn|}.

The vector space of all real sequences such that
∑

|xi|p converges is called the Lp space, and this
is studied in functional analysis.

1.5 Compact sets
Definition 1.30 (Bounded sets).
A subset X ⊂ Rn is bounded if it is contained in a ball in Rn centered at the origin:

X ⊂ BR(0) for some R <∞.

Definition 1.31 (Compact sets).
A nonempty subset C ⊂ Rn is compact if it is closed and bounded

Compactness is a powerful definition, as it is enough to imply the existence of a convergent
subsequence for any sequence in the compact set:

Theorem 1.32 (Bolzano-Weierstrass theorem). If a compact set C ⊂ Rn contains a sequence i 7→ xi,
then that sequence has a convergent subsequence j 7→ xi(j) whose limit is in C.

Proof. Put C in a bounded box, say B1 : {|v1|, |v2|, . . . , |vn| ⩽ N}. Choose a1 (from the sequence)
anywhere in B1. Chop the box into 4 smaller boxes–one of these, call B2 must have infinitely many
items of the sequence. Choose a2 from the sequence anywhere in B2. Repeat ad infinitum. ■

Definition 1.33 (Bounds of a function).
A number M is the supremum, denoted by supc∈C f(c) of a function5 f : C → R if M is the least
upper bound of the values of f . If there is an a ∈ C such that f(a) =M thenM is also the maximum
of f .

Similarly, a number M is the infimum, denoted by infc∈C f(c) of a function f : C → R if M is
the greatest lower bound of the values of f . If there is a b ∈ C such that f(b) = M then M is also
the minimum of f .

4Power mean inequality: for xi > 0, p > q > 0,
(∑

xp
i

)1/p

>
(∑

xq
i

)1/q

5Here, C can be any subset of Rn—not necessarily compact.
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Theorem 1.34. A continuous function on a compact domain has both maximums and minimums. More
formally, let C ⊂ Rn be a compact subset, and let f : C → R be a continuous function. Then there exists a
point a ∈ C such that f(a) ⩾ f(c) for all c ∈ C as well as a point b ∈ C such that f(b) ⩽ f(c) for all
c ∈ C.

Proof. Here is a sketch: if f is unbounded then there exists a sequence n 7→ xn such that f(xN ) > N

for all positive integersN . By Bolzano-Weierstrass, there is a subsequence of j 7→ xnj
that converges

to a point in C, but this implies f is not continuous at C. Therefore f is bounded, and so f has a
supremum M . Therefore there is a sequence n 7→ yn such that

lim
n→∞

f(yn) =M.

Take a subsequence j 7→ ynj
that converges to a point y, and it follows that

f(y) = lim
j→∞

f(ynj
) =M. ■

2 Derivatives
2.1 Review of derivatives in R
Exercise 2.1 (1.7.3 in book). Find f ′(x) for the following functions f :

a. f(x) = sin3(x2 + cosx)

b. f(x) = cos2
(
(x+ sinx)2

)
c. f(x) = (cosx)4 sinx

d. f(x) = (x+ sin4 x)3

e. f(x) = sin x2 sin3 x
2+sin x

f. f(x) = sin
(

x3

sin x2

)
Answer: a. 3 sin2(x2 + cosx) · cos(x2 + cosx) · (2x− sinx)

Exercise 2.2 (1.7.4 in book). Using the definition, check whether the following functions are differ-
entiable at 0.

a. f(x) = |x|3/2

b. f(x) =
{
x ln |x| if x ̸= 0

0 if x = 0

c. f(x) =
{
x/ ln |x| if x ̸= 0

0 if x = 0

In each case, if f is differentiable at 0, is f(0 + h)− f(0)− f ′(0)h comparable to h2?

Solution. a. For x > 0, d
dxx

3/2 = 3
2x

−1/2. For x < 0, d
dx (−x)

3/2 = − 3
2x

−1/2. These both
approach 0 as x→ 0, so f is differentiable. However, the error is O(h3/2).

b. We have h ln |h|−0
h−0 = ln |h| which goes to −∞ as h→ 0, so f is not differentiable.

c. We have
h

ln |h|−0

h−0 = 1
ln |h| which indeed goes to 0 as h→ 0, so f is differentiable. Size of error

is left to the reader.

Theorem 2.3 (Mean value theorem). If f : [a, b] → R is continuous, and f is differentiable on (a, b),
then there exists c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.
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This theorem don’t really fit anywhere, but I’ll put it here.

Theorem 2.4 (Fundamental theorem of algebra). Let P be a single-variable polynomial with complex
coefficients and positive degree. Then P has a root.

2.2 Derivatives: full, partial, directional
The idea behind derivatives in Rn is like that of derivatives in R: local linearization. Given f : Rn →
Rm, the derivative of f at x is linear approximation Df(x) : Rn → Rm of f at x with error vanishing
faster than h, that is,

(f(x + h)− f(x))− Df(x)(h) ∈ o(h),

or, in more familiar terms,

lim
h→0

(f(x + h)− f(x))− [Df(x)](h)
∥h∥ = 0.

If [Df(x)] exists, we can find it as follows: for each standard basis vector ei,

0 = limh→0
1

|hei| (f(x + hei)− f(x)− [Df(x)](hei))
= limh→0

1
|h| (f(x + hei)− f(x)− h[Df(x)](ei))

= f(x+hei)−f(x)
h − [Df(x)]ei

so if [Df(x)] exists,
[Df(x)]ei = lim

h→0

f(x + hei)− f(x)
h

.

This can be calculated by considering xi (that is, the ith component of x) the only variable and
holding all other components constant. In calculating this, only a part of x is changed, and so the
above limit is called the partial derivative of f at x with respect to xi.

There are a variety of notations for partial derivatives:

• Dif(x)

• Dxf(x), Dyf(x), Dzf(x)

• ∂f
∂xi

• fx, fx1
, . . .

Note that computing partial derivatives is just like computing derivatives in R.

Example 2.5. For f(x, y) = sin(x2+ y3),Dxf(x, y) = cos(x2+ y3) · 2x andDyf(x, y) = cos(x2+
y3) · 3y2, so [

Df
(
x

y

)]
= cos(x2 + y3) ·

[
2x 3y2

]
.

Exercise 2.6 (1.7.5 in book). Find the partial derivatives of the following functions f : R2 → R:

a. f
(
x

y

)
=
√
x2 + y

b. f
(
x

y

)
= x2y + y4

c. f
(
x

y

)
= cosxy + y cos y

d. f
(
x

y

)
=

xy2√
x+ y2

12



Partial derivatives concerns situations where we approach a point on line parallel to an axis, and
there is nothing stopping us from approaching a point on other lines. This is the idea of directional
derivatives.

Definition 2.7.
The directional derivative of f at x in direction v is the rate of change of f as we step into direction v,
which is

lim
h→0

f(x + hv)− f(x)
h

.

Proposition 2.8 (1.7.14 in book). If U ⊂ Rn is open, and f : U → Rm is differentiable at a ∈ U ,
then all directional derivatives of f at a exist, and the directional derivative in the direction v is given
by

[Df(x)]v = lim
h→0

f(x + hv)− f(x)
h

.

Proof. Define the remainder r(h) as the error of the linear approximation:

r(h) = (f(a + h)− f(a))− [Df(a)]h.

As f is differentiable at a, limh→0 r(h)/∥h∥ = 0.
Substituting hv for h then dividing everything by h gives

|v|r(hv)
∥hv∥ =

f(a + hv)− f(a)
h

.

When taking h→ 0, LHS goes to 0, so the limit of RHS exists, and is 0. ■

2.3 Jacobian matrix
The Jacobian matrix of f at x, or simply Jacobian, denoted [Jf(x)], is the matrix listing out all the
partial derivatives of f at x, that is, if we write

f


x1
x2
...
xn

 =


y1
y2
...
ym


then Jf


x1
x2
...
xn


 =

[
∂f
∂x1

∂f
∂x2

· · · ∂f
∂xn

]
=



∂y1
∂x1

∂y1
∂x2

· · · ∂y1
∂xn

∂y2
∂x1

∂y2
∂x2

· · · ∂y2
∂xn...

... . . . ...
∂ym
∂x1

∂ym
∂x2

· · · ∂ym
∂xn


Here we might notice that [Jf(x)]ei is precisely ∂f

xi
, so if [Df(x)] exists then [Df(x)] = [J(x)]. In

words, if the derivative exists, then the Jacobian matrix is also the matrix of the derivative. Just to
make sure we don’t forget:

Warning 2.9.
The Jacobian is only the matrix of the derivative if the function is actually differentiable!

The natural question to ask after this is thus: when is a function differentiable?
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2.4 Differentiability
Definition 2.10 (Cp function).
A Cp function on U ⊂ Rn is a function that is p times continuously differentiable: all of its partial
derivatives up to order p exist and are continuous on U .

Theorem 2.11 (Criterion for differentiability). If U is an open subset of Rn, and f : U → Rm is a C1

mapping, then f is differentiable on U , and its derivative is given by the Jacobian matrix.

Exercise 2.12 (1.9.1 in book). Show that the function

f

(
x

y

)
=

{
x4+y4

x2+y2 if
(
x
y

)
̸=
(
0
0

)
0 if

(
x
y

)
=
(
0
0

)
is differentiable at every point in R2.

Solution. Since f is symmetric in x and y, it suffices to consider partial derivatives of f w.r.t. x. For
any point

(
x
y

)
̸=
(
0
0

)
, we have

Dxf

(
x

y

)
=

4x3(x2 + y2)− 2x(x4 + y4)

(x2 + y2)2

which exists.
For

(
0
0

)
we have

Dxf

(
0

0

)
= lim

h→0

f
(
h
0

)
− f

(
0
0

)
h

= lim
h→0

h4

h · h2
= 0.

It is left to show that
lim

(xy)→(00)
Dxf

(
x

y

)
= Dxf

(
0

0

)
but that is true since∣∣∣∣4x3(x2 + y2)− 2x(x4 + y4)

(x2 + y2)2

∣∣∣∣ ⩽ ∣∣∣∣ 4x3

x2 + y2

∣∣∣∣+ ∣∣∣∣2x(x4 + y4)

(x2 + y2)2

∣∣∣∣ ⩽ |4x|+ |2x|

which goes to 0 as x, y → 0.

Differentiability is a very strong condition, and even the existence of directional derivatives is not
enough:

Exercise 2.13 (1.9.2a in book). Show that for

f

(
x

y

)
=

{
3x2y−y3

x2+y2 if
(
x
y

)
̸=
(
0
0

)
0 if

(
x
y

)
=
(
0
0

)
,

all directional derivatives exist, but that f is not differentiable at the origin.

Solution. We first calculate the Jacobian. We have

Dxf

(
0

0

)
= lim

h→0

f
(
h
0

)
h

= lim
h→0

3h2

h3
= 0
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and
Dyf

(
0

0

)
= lim

h→0

f
(
0
h

)
h

= lim
h→0

−h3

h3
= −1

so [
Jf

(
0

0

)]
=
[
0 −1

]
For a direction v =

[
v1
v2

]
, lim
h→0

f(hv)
h

= lim
h→0

3v21v2 − v32
v21 + v22

which clearly exists, so all directional

derivatives of f exist.

If f is differentiable, the directional derivative has to be [Jf(0]v = −v2 but for v =

[
1

1

]
this

gives −1 = 1, which is a contradiction.

Exercise 2.14 (1.9.2b in book). Show that for

g

(
x

y

)
=

{
x2y

x4+y2 if
(
x
y

)
̸=
(
0
0

)
0 if

(
x
y

)
=
(
0
0

)
,

all directional derivatives exist at every point, but that g is not continuous

Solution. As g is a rational function that does not vanish at any point that is not
(
0
0

)
, directional

derivatives of g exist at any
(
x
y

)
̸=
(
0
0

)
.

At
(
0
0

)
, so the directional derivatives exist.

However, approaching
(
x
y

)
on the line y = x2 gives

lim
x→0

g

(
x

x2

)
= lim

x→0

x4

2x4
=

1

2
̸= 0

so f is not continuous.

Exercise 2.15 (1.9.2c in book). Show that for

h

(
x

y

)
=

{
x2y

x6+y2 if
(
x
y

)
̸=
(
0
0

)
0 if

(
x
y

)
=
(
0
0

)
,

all directional derivatives exist at every point, but that h is unbounded in a neighborhood of 0.

Solution. As h is a rational function that does not vanish at any point that is not
(
0
0

)
, directional

derivatives of h exist at any
(
x
y

)
̸=
(
0
0

)
.

At
(
0
0

)
, so the directional derivatives exist.

However, approaching
(
x
y

)
on the line y = x3 gives

g

(
x

x3

)
=

x5

2x6
=

1

2x

which grows unbounded as x→ 0.

Exercise 2.16 (1.34 in book). Consider the function f : R2 → R given by the formula

f

(
x

y

)
=


xy

x2 + y2
if
(
x

y

)
̸=

(
0

0

)

0 if
(
x

y

)
=

(
0

0

)
.
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a. Show that both partial derivatives exist everywhere.
b. Where is f differentiable?

Solution. At any point p except the origin, f is a rational function that does not vanish, so f has
partial derivatives and is differentiable at p. At the origin,

a. Dxf(0) = lim
h→0

f(he1)− f(0)
h

= 0 so Dxf(0) exists. Similarly, as f is symmetric, Dyf(0)
also exists as well.

b. Approaching the origin on the line x = y gives

lim
x→0

f

(
x

x

)
= lim

x→0

x2

2x2
=

1

2
̸= 0

so f is not continuous, and is not differentiable.

2.5 Computing derivatives
Most rules in R transfer to Rm:

• A constant function is differentiable, and its derivative is the zero matrix [0].
• A linear function f ∈ L(Rn,Rm) is differentiable, and is its own derivative at all points.
• Sum rule: Derivatives are additive.
• Product rule: if f : U → R and g : U → Rm are differentiable at a, then so is fg, and the

derivative is given by

[D(fg)(a)]v = f(a)[Dg(a)]v + ([Df(a)]v)g(a).

The division rule works as well, but it’s pretty hard to type out in LATEX.
For a differentiable function where partial derivatives are easy to calculate, also recall the Jacobian:

if

f


x1
x2
...
xn

 =


y1
y2
...
ym


then Df


x1
x2
...
xn


 =



∂y1
∂x1

∂y1
∂x2

· · · ∂y1
∂xn

∂y2
∂x1

∂y2
∂x2

· · · ∂y2
∂xn...

... . . . ...
∂ym
∂x1

∂ym
∂x2

· · · ∂ym
∂xn


Theorem 2.17 (Chain rule). Let U ⊂ Rn, V ⊂ Rm be open sets, let g : U → V and f : V → Rp

be mappings, and let a be a point of U . If g is differentiable at a and f is differentiable at g(a), then the
composition f ◦ g is differentiable at a, and its derivative is given by

[D(f ◦ g)(a)] = [Df(g(a))] ◦ [Dga].
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Warning 2.18.
(f ◦ g)(a) = f(g(a)) does not mean [D(f ◦ g)(a)]) = [Df(g(a))]: the former is the derivative of f ◦ g
at a but the latter is the derivative of f at point g(a).

Example 2.19 (1.8.4 in book). Define g : R → R3 and f : R3 → R by

f

xy
z

 = x2 + y2 + z2, and g(t) =

 t

t2

t3

 .

Then, [D(f◦g)(t)] can be found by first evaluating [Dg(t)] =

 1

2t

3t2

 and [Df(g(t))] =
[
2t 2t2 2t3

]
.

Therefore, we get

[D(f ◦ g)(t)] =
[
2t 2t2 2t3

] 1

2t

3t2

 = 2t+ 4t3 + 6t5.

Finding f ◦ g directly gives f ◦ g(t) = t2 + t4 + t6 so (f ◦ g)′(t) = 2t+ 4t3 + 6t5 as it should.

Exercise 2.20 (1.8.9 in book). Let φ : R → R be any differentiable function. Show that the function

f
(
yφ(x2 − y2)

)
satisfies the equation

1

x
D1f

(
x

y

)
+

1

y
D2f

(
x

y

)
=

1

y2
f

(
x

y

)
Solution. As f

(
x
y

)
= yφ(x2 − y2),

1

x
D1f

(
x

y

)
+

1

y
D2f

(
x

y

)
=

1

x
Dx

(
yφ(x2 − y2)

)
+

1

y
Dy

(
yφ(x2 − y2)

)
=

1

x

(
2xyφ′(x2 − y2)

)
+

1

y

(
−2y2φ′(x2 − y2) + φ′(x2 − y2)

)
=

1

y
φ(x2 − y2)

=
1

y2
f

(
x

y

)
.

Exercise 2.21 (1.8.11 in book). Show that if f
(
x

y

)
= ϕ

(
x+ y

x− y

)
for some differentiable function

ϕ : R → R, then
xDxf + yDyf = 0.

Solution. Let g : R2 → R be defined by g
(
x
y

)
= x+y

x−y . Then, f = ϕ ◦ g, so by the chain rule[
Df
(
x

y

)]
=

[
Dϕ

(
g

(
x

y

))]
◦
[
Dg
(
x

y

)]
= ϕ′

(
x+ y

x− y

)
· 2

(x− y)2

[
−y x

]
Therefore,

xDxf + yDyf = ϕ′
(
x+ y

x− y

)
(−2xy + 2xy) = 0.
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Example 2.22. Further down the road, we will need to transform coordinates, so as an example, if
we write x = r cos θ, y = r sin θ then we can consider the function g sending

(
r
θ

)
→
(
x
y

)
. This gives

[
Dg
(
r

θ

)]
=

[
cos θ −r sin θ
sin θ r cos θ

]
.

Therefore, for a function f : R2 → R[
Df
(
x(r, θ)

y(r, θ)

)]
=

[
D(f ◦ g)

(
r

θ

)]
=

[
Df
(
x

y

)]
◦

[
cos θ −r sin θ
sin θ r cos θ

]
.

Theorem 2.23 (Multivariable mean value theorem). Let U ⊂ Rn be open, let f : U → R be differ-
entiable, and let the segment [a, b] joining a → b be contained in U . Then there exists c0 ∈ [a, b] such
that

f(b)− f(a) = [Df(c0)](b − a).

2.6 Newton’s method
Newton’s method is a way to approximately solve a nonlinear equation by making repeated guesses
and linear approximations. Essentially, to find a solution to f(a) = 0, we start with a guess a0. In
each step, given guess an, we make a new guess

an+1 = an − [Df(an)]−1f(an).

Mathematica snippet:

f[{x_, y_}] = {Cos[x] + y - 1.1, x + Cos[x + y] - 0.9};
g[{x_, y_}] = {x, y} - Inverse[D[f[{x, y}], {{x, y}}]].f[{x, y}]

2.7 Inverse and implicit function theorems
Given a function from Rn → Rm, is there a neighborhood U in Rm with a function g : U → Rn

such that f ◦ g = g ◦ f = id? Answer: if the derivative is invertible.

Theorem 2.24 (Inverse function theorem). If f is continuously differentiable, and its derivative is in-
vertible at some point x0, then f is locally invertible, with differentiable inverse, in some neighborhood of the
point f(x0).

Given an equation F (x1, x2, . . . , xn) : Rn → Rm. Is there a neighborhood U in Rn so that some
of the xi are functions of the others?

Theorem 2.25 (Implicit function theorem, short form). Let U ⊂ Rn be open and c a point in U . Let
F : U → Rn−k be a C1 mapping such that F(c) = 0 and [DF(c)] is onto. Then the system of linear
equations [DF(c)](x) = 0 has n − k pivotal variables and k non-pivotal variables, and there exists a
neighborhood of c in which F = 0 implicitly defines the n − k pivotal variables as a function g of the k
non-pivotal variables.

Example 2.26. If we take F
(
x
y

)
= x2 + y2 − 1, then [DF

(
x
y

)
] =

[
2x 2y

]
. Take a point, say,

c =
(
1
0

)
which satisfy F(c) = 0. Then, [DF(c)] =

[
2 0

]
. As x is pivotal and y cannot be pivotal,
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x is a function of y in a neighborhood of c. In this case it happens that y cannot be a function of x
in any neighborhood of c too, but this is not always true.

On the other hand, if we take c =
(1/√2

1/
√
2

)
then [DF(c)] =

[√
2

√
2
]

where both x and y can
be pivotal, so x and y are functions of each other in some neighborhood of c.

Exercise 2.27 (2.10.1 in book). Does the inverse function theorem guarantee that the following
functions are locally invertible with differentiable inverse?

a. F
(
x

y

)
=

x2y

−2x

y2

 at
(
1

1

)

b. F
(
x

y

)
=

(
x2y

−2x

)
at
(
1

1

)
Solution. a. First of all, F consists entirely of polynomials, so F is continuously differentiable. At

point
(
1
1

)
the derivative of F is

[
DF
(
1

1

)]
=

 2 1

−2 0

0 2


which is not even a square matrix, and hence not invertible. This applies to any functions from
Rn → Rm with n ̸= m.

b. We have [
DF
(
1

1

)]
=

[
2 1

−2 0

]
which is invertible.

Exercise 2.28 (2.10.5 in book). Apply the implicit function theorem to y2 + y + 3x + 1 = 0, and
determine where y can be defined implicitly as a function of x.

Solution. [
DF
(
x

y

)]
=
[
3 2y + 1

]
.

Clearly, for any point
(
x
y

)
with y ̸= −1/2, y is pivotal, so F defines y implicitly as a function of F in

some neighborhood of each point c with yc ̸= −1/2.

Exercise 2.29 (2.10.9 in book). Does the system of equations

x+ y + sin(xy) = a, sin(x2 + y) = 2a

have a solution for sufficiently small (but nonzero) a?

Solution. Consider F

xy
a

 =

(
x+ y + sin(xy)− a

sin(x2 + y)− 2a

)
. We can calculate

DF

xy
a


 =

[
1 + y cos(xy) 1 + x cos(xy) −1

2x cos(x2 + y) cos(x2 + y) −2

]
,
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so DF

0

0

0


 =

[
1 1 −1

0 1 −2

]
.

As x and y can both be made pivotal and a non-pivotal, it follows that x and y are functions of a in
some neighborhood of 0.

Exercise 2.30 (2.10.15a in book). Show that the mapping F
(
x

y

)
=

(
ex + ey

ex + e−y

)
is locally invert-

ible at every point
(
x

y

)
∈ R2.

Solution. First, as each component of F is formed by continuously differentiable fuctions, F is also

continuously differentiable. At each point
(
x

y

)
, we have

[
DF

(
x

y

)]
=

[
ex ey

ex −e−y

]

This gives

det
[
DF

(
x

y

)]
= −ex−y − ex+y < 0

so [DF(p)] is always invertible, so F is locally invertible at every point p ∈ R2.

Exercise 2.31 (2.31 in book). a. True or false? The equation sin(xyz) = z expresses x implicitly
as a differentiable function of y and z near the point (x, y, z) = (π/2, 1, 1).

b. True or false? The equation sin(xyz) = z expresses z implicitly as a differentiable function of
x and y near the point (x, y, z) = (π/2, 1, 1).

Solution. Let F : R3 → R be defined by F (x, y, z) = sin(xyz)− z. We first calculate

[DF (x, y, z)] =
[
yz cos(xyz) xz cos(xyz) xy cos(xyz)− 1

]
.

Therefore,
[DF (π/2, 1, 1)] =

[
0 0 −1

]
so z is the only pivotal variable, so z can be expressed as a differentiable function of x and y, but x
cannot be expressed as a differentiable function of y and z.

3 Manifolds
3.1 Definition and parametrization

• Idea: in BC Calc, the main object of study was functions. This is too restrictive as many objects
that are smooth (have a best linear approximation at each point) are not graphs of functions
globally. Example: circles, spirals, etc.
Since the derivative only tells us about the local properties of a set of points, it suffices to ask
that the set is a graph of a differentiable function in some neighborhood of every point.
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Definition 3.1.
A subset M ⊂ Rn is a smooth k-dimensional manifold if locally it is the graph of a C1 mapping
Rk → Rn−k. In other words, for any point m ∈ M , there is a mapping f : Rk → Rn−k which
coincides with M on a neighborhood of the projection of m onto Rk.

There are two important ways to define a manifold:
i) By equation, for example, x2 + y2 − 1 = 0.

ii) By parametrization: j(t) =
(cos t

sin t

)
for t ∈ (0, 2π).

When does an equation define a smooth manifold, and when does a parametrization define a
smooth manifold?

Theorem 3.2. Let U ⊂ Rn be open, and let F : U → Rn−k be a C1 mapping. LetM be a subset of Rn

such that
M ∩ U = {z ∈ U | F (z) = 0}.

If [DF (z)] is onto for every z ∈ M ∩ U , then M ∩ U is a smooth k-dimensional manifold embedded in
Rn. If every z ∈M is in such a U , thenM is a k-dimensional manifold.

Conversely, if M is a smooth k-dimensional manifold embedded in Rn, then every point z ∈ M has
a neighborhood U ⊂ Rn such that there exists a C1 mapping F : U → Rn−k with [DF (z)] onto and
M ∩ U = {y | F (y) = 0}.

Definition 3.3 (Parametrization of a manifold).
A parametrization of a k-dimensional manifold M ⊂ Rn is a mapping γ : U ⊂ Rk →M satisfying
the following conditions:

i. U is open
ii. γ is a C1 bijection
iii. [Dγ(u)] is injective for every u ∈ U .

Exercise 3.4 (3.1.11 in book). a. Find a parametrization for the unionX of the lines through the

origin and a point of the parametrized curve t 7→

 t

t2

t2

.

b. Find an equation for the closure X of X . Is X exactly X?
c. Show that X − {0} is a smooth surface.

d. Show that the map
(
r

θ

)
7→

r(1 + sin θ)
r cos θ

r(1− sin θ)

 is another parametrization of X . 6

e. Relate X to the set of noninvertible symmetric 2× 2 matrices.

Solution. a.
(
t

u

)
→

 ut

ut2

ut3


b. Equation of X : xz − y2 = 0. Here, X ̸= X because

0

0

z

 is in X but not X .

6It seems that parametrization of X actually means a parametrization of an open set with closure X .

21



c. For F

xy
z

 = xz − y2,

DF

xy
z


 =

[
z −2y x

]
. Unless

xy
z

 = 0, this is injective,

so X − {0} is a smooth surface.

d. It is easy to see that for any point

r(1 + sin θ)
r cos θ

r(1− sin θ)

. Consider a point

xy
z

 such that xz−y2 =

0. If x+ z = 0 it follows that x = y = z = 0 and this is given by r = 0. Else choose θ so that
cos θ = 2y

x+z , and r = x+z
2 .

e. xz − y2 = det
∣∣∣∣∣x y

y z

∣∣∣∣∣ .
3.2 Tangent spaces
As we saw previously, a k-manifold in Rn can be thought of as the solution to an equation F(x) = 0

or the image of a parametrization γ : Rk → Rn. Since both F and γ are assumed to be C1, their
derivatives at a point x give a local linear approximation of the manifold, and this is called the tangent
space to the manifold at point x.

The linear equivalent of {x | F(x) = 0} is ker[DF(x)], and the linear equivalent of im γ(u) is
im [Dγ(u)].

Example 3.5 (Unit circle equation). Our favorite example, the unit circle, can be written as the
equation

F

(
x

y

)
= x2 + y2 − 1 which gives

[
DF

(
x

y

)]
=
[
2x 2y

]
.

Therefore, the tangent space is given by

ker
[
2x 2y

]
=

{[
ẋ

ẏ

]
∈ R2

∣∣∣∣∣ [2x 2y
]
·

[
ẋ

ẏ

]
= 0

}
.

Here the tangent space is based on coordinates (ẋ, ẏ) centered at the point (x, y).
At (x, y) = (1, 0), for example, our kernel equation reduces to 2ẋ = 0, so the tangent space is

ẋ = 0. This is the same as the tangent line at (1, 0), which is x−1 = 0, but with coordinates shifted
so that (1, 0) becomes the origin.

At (x, y) =
(

1√
2
, 1√

2

)
, the kernel equation is

√
2ẋ+

√
2ẏ = 0, so the tangent space is ẋ+ ẏ = 0.

Again, note that here, (ẋ, ẏ) = 0 when (x, y) =
(

1√
2
, 1√

2

)
.

In general, for a point (x, y) on the circle, the tangent space is given by xẋ+ yẏ = 0.

Example 3.6 (Unit circle parametrization). The unit circle also admits a parametrization

γ(t) =

(
cos t
sin t

)
, t ∈ (0, 2π) or t ∈ (−π, π), which gives [Dγ(t)] =

[
− sin t
cos t

]
.

Therefore, each t ∈ (0, 2π) gives a point on the circle with the tangent space spanned by
[
− sin t
cos t

]
.

Just like before, the tangent space is centered at γ(t).
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At t = 0, for example, this shows that the tangent space is spanned by
[
0

1

]
as we expect, and at

t = pi
4 , the tangent space is spanned by

[
− 1√

2
1√
2

]
, which is also as expected.

Exercise 3.7 (3.2.4 in book). For each of the following functions f and points
(
a

b

)
, state whether

there is a tangent plane to the graph of f and point

 a

b

f
(
a
b

)
. If there is such a tangent plane, find

its equation, and compute the intersection of the tangent plane with the graph.7

Solution. Using parametrizations:

a. The parametrization γ :

(
x

y

)
7→

 x

y

x2 − y2

 has derivative [Dγ(t)] =

 1 0

0 1

2x −2y

 which is

1 0

0 1

2 −2

 at
(
x

y

)
=

(
1

1

)
. The columns are linearly independent, so there is a tangent space

centered at
(
1

1

)
spanned by the columns. This gives the tangent plane

 1 + s

1 + t

2s− 2t

.

b. The parametrization γ :

(
x

y

)
7→

 x

y√
x2 + y2

 has derivative [Dγ(t)] =

 1 0

0 1
x√

x2+y2

y√
x2+y2

,

which does not exist at the origin, so there are no tangent planes at the origin.

c. At
(

1

−1

)
, the derivative is given by

 1 0

0 1
1√
2

−1√
2

. Therefore the tangent plane is

 1 + s

−1 + t
1√
2
(2− s− t)

.

d. The parametrization γ :

(
x

y

)
7→

 x

y

cos(x2 + y)

 has derivative

[Dγ(t)] =

 1 0

0 1

−2x sin(x2 + y) − sin(x2 + y)

 ,

which reduces to

1 0

0 1

0 0

 at the origin, so the tangent plane is

st
1

.

Using equations:
7We won’t do this last part.
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a. The equation F

xy
z

 : z − x2 + y2 = 0 has derivative

DF

xy
z


 =

[
−2x 2y 1

]
. The

tangent space at
(
1

1

)
is given by ker

DF

1

1

0


 = ker

[
−2 2 1

]
so the tangent plane is

given by −2(x− 1) + 2(y − 1) + z = 0, which is −2x+ 2y + z = 0.

b. The equation F

xy
z

 : z2 − x2 − y2 = 0 has derivative

DF

xy
z


 =

[
−2x −2y 2z

]
.

At the origin, [DF (0)] is not onto, so there are no tangent spaces.

c. At
(

1

−1

)
, the tangent space is ker

DF

 1

−1√
2


 = ker

[
−2 2 2

√
2
]

so the tangent plane

is given by −2(x− 1) + 2(y + 1) + 2
√
2(z −

√
2) = 0, which is −x+ y +

√
2z = −2.

d. The equation F

xy
z

 : z − cos(x2 + y) = 0 has derivative

DF

xy
z


 =

[
−2x sin(x2 + y) − sin(x2 + y) −1

]
.

At
(
0

0

)
, this tangent space is given by ker

DF

0

0

0


 ...

Exercise 3.8 (3.2.6 in book). a. Show that the subsetX ⊂ R4 where x21+x22−x23−x24 = 0 and
x1+2x2+3x3+4x4 = 4 is a manifold in R4 in a neighborhood of the point p = (1, 0, 1, 0).

b. What is the tangent space to X at p?
c. What pair of variables do the equations above not express as functions of the other two?
d. Is the entire set X a manifold?

Solution. a. Let F(x1, x2, x3, x4) =
(

x21 + x22 − x23 − x24
x1 + 2x2 + 3x3 + 4x4

)
. It follows that

[DF(x1, x2, x3, x4)] =
[
2x1 2x2 −2x3 −2x4
1 2 3 4

]
so at p,

[DF(p)] =
[
2 0 −2 0

1 2 3 4

]
.

As the first two columns are linearly independent, [DF(p)] has full rank, so F = 0 describes a
smooth manifold in a neighborhood of p.
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b. The tangent space to X at p is ker [DF(p)]. Row-reducing gives[
1 0 −1 0

0 1 2 2

]

so ker [DF(p)] is given by ẋ1 + ẋ3 = 0 and ẋ2 + 2ẋ3 + 2ẋ4 = 0 which is

span



−1

−2

1

0

 ,


0

−2

0

1


 .

c. In [DF(p)] x = 0, x2 and x4 cannot be pivotal at the same time.
d. For X not to be a manifold in a neighborhood of a point q = (y1, y2, y3, y4), it follows that

[DF(q)] has rank at most one. As no column of [DF(q)] can be zero, all columns of [DF(q)]
must be scalar multiples of each other, and this gives q = k(1, 2,−3,−4) for some scalar k.
However, the two equations for X reduce to

−20k2 = 0 and − 4k = 4

which cannot simultaneously hold. Therefore, for any point q ∈ X , X is a manifold in a
neighborhood of q, so X is a manifold.

4 Optimizations
4.1 Critical points and Hessian matrix
Recall the Taylor polynomial at x = 0:

f(x) = f(0) + f ′(0)x+ f ′′(0)
x2

2!
+ f ′′′(0)

x3

3!
+ · · · .

In general, the Taylor polynomial at x = a is

f(x) = f(a) + f ′(a)(x− a) + f ′′(a)
(x− a)2

2!
+ f ′′′(a)

(x− a)3

3!
+ · · · .

If f ′(a) = 0, the behavior of f near a is determined by the quadratic term f ′′(a).
For a function f : R2 → R, if f is at least C2, we can write, at 0:

f(p) = f(0) +Dxf(0)x+Dy(0)y+
1

2!

(
Dxxf(0)x2 +Dxyf(0)xy +Dyxf(0)yx+Dyyf(0)y2

)
+ · · ·

therefore
f(p) ≈ f(0) + [Df(0)]p +

1

2
pT [Hf(0)]p

where [Hf(0)] is the Hessian matrix:

[Hf(0)] =
[
Dxxf(0) Dxyf(0)
Dyxf(0) Dyyf(0)

]
.
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It turns out that in higher-order partials, the order of differentiation does not matter:

Dxyf = Dyxf

whenever they exist, so the Hessian is symmetric.
If [Df(p)] =

[
0 0

]
, p is a critical point of f , and [Hf(p)] determines the behavior of f near p.

If [Hf(p)] is positive definite8, p is a local minimum; if it is negative definite, p is a local maximum.
If it is semidefinite, then p is a local maximum or minimum, but they may not be unique. If it is
neither, p is a saddle point.

Exercise 4.1 (3.6.1 in book). a. Show that f(x, y, z) = x2 + xy+ z2 − cos y has a critical point
at the origin.

b. What kind of critical point does it have?

Solution. a. We have [Df(x, y, z)] =
[
2x+ y x+ sin y 2z

]
so [Df(0] =

[
0 0 0

]
.

b. The Hessian matrix at a point (x, y, z) is

[Hf(x, y, z)] =

2 1 0

1 cos y 0

0 0 2

 .
At the origin it is

[Hf(0)] =

2 1 0

1 1 0

0 0 2

 ,
which has eigenvalues

{
2,

3−
√
5

2
,
3 +

√
5

2

}
all positive, so [Hf(0)] is positive definite, so 0

is a local minimum of f .

4.2 Lagrange Multipliers
Main idea: find points on manifold such that the derivative is zero in all directions tangent to the
manifold → this will give a critical point on the manifold.

Theorem 4.2 (Lagrange Multipliers, 3.7.5 in book). Let U ⊂ Rn be open, and let F : U → Rm be
a C1 mapping defining a manifold X , with [DF(x)] onto for every x ∈ X . Let f : U → R be a C1

mapping. Then a is a critical point of f restricted toX if and only if there exist numbers λ1, . . . , λm, called
Lagrange multipliers such that

[Df(a)] = λ1[DF1(a)] + · · ·+ λm[DFm(a)].

Example 4.3 (3.7.6 in book). Suppose we want to maximize f(x, y) = x+y on the ellipse x2+2y2 =

1. We have
F (x, y) = x2 + 2y2 − 1 and [DF (x, y)] = [2x, 4y]

while [Df(x, y)] = [1, 1]. At a critical point, there will be λ such that

[1, 1] = λ[2x, 4y].

8Recall: if both eigenvalues are positive, the quadratic form is positive definite; if one is positive and one is zero, it is positive
semidefinite; if one is positive and one is negative, it is indefinite, etc.
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Plugging this into the F gives

λ = ±
√

3

8
, so (x, y) = ±

(√
2

3
,

√
1

6

)

At these critical points,

x+ y = ±
√

3

2

so the maximum of f on F is
√

3

2
.

Exercise 4.4 (3.7.6 in book). Find all the critical points of the function

f(x, y, z) = 2xy + 2yz − 2x2 − 2y2 − 2z2

on the unit sphere in R3.

Solution. The constraint function F is F (x, y, z) = x2+y2+z2−1 so [DF (x, y, z)] = [2x, 2y, 2z].

On the other hand, [Df(x, y, z)] = [2y− 4x, 2x+2z− 4y, 2y− 4z]. At a critical point, there must
be a λ such that

[2x, 2y, 2z] = λ[2y − 4x, 2x+ 2z − 4y, 2y − 4z].

Let v = (x, y, z), and rewrite the equation as−2 1 0

1 −2 1

0 1 −2

 v = λv

so v must be an eigenvector of the above matrix. We find the (unscaled) eigenvectors to be 1

−
√
2

1

 ,

 1

0

−1

 ,

 1√
2

1

 .

After scaling to fit the constraint F , the eigenvectors, and thus the six critical points are

±


1
2

± 1√
2

1
2

 ,±


1√
2

0

− 1√
2

 .

At these critical points, the values of f are −2±
√
2,−2.

Exercise 4.5 (3.7.8 in book). Find the maximum of the function xae−xybe−y on the triangle x ⩾
0, y ⩾ 0, x+ y ⩽ 1, in terms of a and b, for a, b > 0.

Solution. Let f(x, y) = xae−xybe−y. We have

[Df(x, y)] = e−x−yxa−1yb−1
[
ay − xy bx− xy

]
.

• Inside the triangle, the only critical point is when

[Df(x, y)] =
[
0 0

]
,

and this happens when (x, y) = (a, b) (if it lies inside the triangle).
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• On the boundary F1 : x = 0, which has [DF1] = [1, 0], we want

e−x−yxa−1yb−1
[
ay − xy bx− xy

]
= λ

[
1 0

]
which happens when (x, y) = (b, 0).

• On the boundary F2 : y = 0, similarly, the only possible critical point is when (x, y) = (a, 0).
• On the boundary F3 : x+ y = 1, which has [DF3] = [1, 1], we want

e−x−yxa−1yb−1
[
ay − xy bx− xy

]
= λ

[
1 1

]
which gives (x, y) =

(
a

a+ b
,

b

a+ b

)
.

• There are also the three corner points (0, 0), (1, 0), (0, 1).
Luckily, it is easy to see that any critical point (x, y) = 0with xy = 0 givesF (x, y) = 0which is defi-
nitely not the maximum. There are two remaining possible critical points: (x, y) = (a, b),

(
a

a+ b
,

b

a+ b

)
.

• If a+ b ⩾ 1, (a, b) is on/out of the boundaries of the triangle, so the maximum happens when

(x, y) =

(
a

a+ b
,

b

a+ b

)
, and is aabb

e(a+ b)a+b
.

• If a + b < 1, there is an additional critical point (x, y) = (a, b), where f attains the value
e−(a+b)aabb. We have

e−(a+b)aabb

aabbe−1(a+ b)−(a+b)
= e1−sss

where s = a+ b. It is not hard to show that e1−sss > 1 when s > 1, so f(a, b) is greater than
f
(

a
a+b ,

b
a+b

)
. In this case, f attains the maximum value e−(a+b)aabb at (x, y) = (a, b).

5 Riemann integrals
5.1 Introduction
Goal: calculate a “total amount” from a “density function” defined over a region in Rn.

In order for this to work, two stipulations will be made:
• the region is a bounded subset of Rn, and
• the density function is a bounded function f : Rn → R.
As in BC Calc, the idea is to refine a discrete problem by taking a limit.

Example 5.1 (Rectangular regions). Take the region U = [0, 3] × [0, 2], and the density function
f : R2 → R defined by

0 1 2 3
0

1

2

1

2

-2

4

0

-1
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Then, the total amount is simply 2 + 4 + (−1) + 1 + (−2) + 0 = 4. If we refine the grid so the
number of grid squares go to infinity, we can consider this problem for a function f(x, y) defined
pointwise, for example f(x, y) = 2x+ y2. If this is the density on U , what is the total amount now?

Let us, for example, hold the x-value constant at x = x0. With the x-value held constant, we
have now a function h(y) = f(x0, y) = 2x0 + y2. We can then calculate the “total amount” on the
vertical segment from (x0, 0) to (x0, 2) as∫ 2

0

2x0 + y2 dy = 4x0 +
8

3
.

Finally, the “total amount” over U is obtained by integrating over the remaining variable: x. This
is ∫ 3

0

4x0 +
8

3
dx0 = 26

Intuitively, the result should be the same if we go horizontally first:∫ 2

0

(∫ 3

0

2x+ y2 dx

)
dy =

∫ 2

0

(
x2 + xy2|30

)
dy =

∫ 2

0

9 + 3y2 dy = 26

We can generalize that idea: intuitively9,∫
[a,b]×[c,d]

f(x, y)
∣∣d2(x, y)∣∣ = ∫ b

a

∫ d

c

f(x, y) dy dx =

∫ d

c

∫ b

a

f(x, y) dx dy.

It turns out that this, as well as higher dimensional analogues, is true. This is called Fubini’s theorem.

Example 5.2. We can use the above ideas without much complication to consider other types of
regions. Let’s consider the triangle R with vertices (0, 0), (3, 0), (0, 2), which is bounded by x =

0, y = 0, x3 + y
2 = 1. Here we have∫

R

2x+ y2 d2(x, y) =

∫ 3

0

(∫ 2− 2x
3

0

2x+ y2 dy

)
dx =

∫ 2

0

(∫ 3− 3x
2

0

2x+ y2 dx

)
dy = 8.

Exercise 5.3 (Q31 in problem set). Evaluate∫ 1

0

∫ e

ey

x

lnx dx dy

Solution. Swapping the integrals give

∫ 1

0

∫ e

ey

x

lnx dx dy =

∫ e

1

∫ ln x

0

x

lnx dy dx

=

∫ e

1

x dx

=
e2 − 1

2
.

9Here the absolute value sign denotes the fact that we are not considering orientation.
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5.2 Riemann integrals
We will begin with several useful definitions.

Definition 5.4 (Support).
The support Supp(f) of a function f : Rn → R is the closure of the set

{x ∈ Rn | f(x) ̸= 0}.

Definition 5.5 (MA(f) and mA(f)).
For an f : Rn → R and an A ⊂ Rn, then MA(f) is the supremum of f over A, and mA(f) is the
infimum of f over A.

Definition 5.6 (Oscillation).
The oscillation of f over A is the difference between its supremum and infimum over A.

Riemann integrals in Rn can now be defined as follows:
• PartitionRn into cubes of side length 1 (where a cube is a region of the form [a1, b1]×[a2, b2]×
· · · × [an, bn], and its volume is defined as

∏n
i=1 |bi − ai|.)

• A refinement of this partition is obtained by subdividing each cube into 2n subcubes of side
length 1

2 , using the midpoints of each side. (It turns out that with different partitions, the
integrals, if exists, are all the same value).

• We can then continue refining this partition to get cubes or arbitrarily small side length and
volume.

The N th upper and lower sums of f over A, denoted UN (f) and LN (f), are now defined as the
sum of (the supremums of f over each cube in A times the volume of the cube), and (the infimums
...)

It turns out that as N increases, the upper sums are nonincreasing, and the lower sums are non-
decreasing. This gives rise to the definitions of upper and lower integrals:

Definition 5.7 (Upper and lower integrals; 4.1.10 in book).
We call

U(f) = lim
N→∞

UN (f) and L(f) = lim
N→∞

LN (f)

the upper and lower integrals of f .

If these are equal, then it makes sense to call the value the integral of f :

Definition 5.8 (Integral; 4.1.12 in book).
A function f : Rn → R, bounded with bounded support, is integrable if its upper and lower integrals
are equal. Its integral is then ∫

Rn

f |dnx| = U(f) = L(f).

Exercise 5.9 (4.1.10 in book). a. What are the upper and lower sums U1(f) and L1(f) for the
function

f

(
x

y

)
=

{
x2 + y2 if x, y ∈ (0, 1)

0 otherwise,

i.e. the upper and lower sums for the partition of R2 into squares of side length 1/2?
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b. Compute the integral of f and show that it is between the upper and lower sum.

Solution. a. The lower sum L1(f) is

1

4

(
0 +

1

4
+

1

4
+

1

2

)
=

1

4
.

(Note that the infimum only considers the support of the function!) The upper sum U1(f) is

1

4

(
1

2
+

5

4
+

5

4
+ 2

)
=

5

4
.

b. The integral is ∫ 1

0

∫ 1

0

x2 + y2 dy dx =

∫ 1

0

x2 +
1

3
dx =

2

3

which is between the lower sum and the upper sum.

Proposition 5.10 (Properties of the Riemann integral). 1. The set of Riemann integrable func-
tions is closed under addition and scalar multiplications (and so it is a vector space).

2. The Riemann integral commutes with addition and scalar multiplication (and so it is a linear
transformation on the aforementioned vector space)

3. If f(x) ⩽ g(x) for all x then ∫
Rn

f |dnx| ⩽
∫
Rn

g|dnx|.

Definition 5.11 (Volume in Rn).
When 1A, the indicator function of A, is integrable, then the n-dimensional volume of A is

volnA =

∫
Rn

1A|dnx|.

The set A is then said to be Riemann measurable.

As expected, the volume is preserved under translations, and the volume of the union of two
disjoint sets is the sum of the individual volumes.

Also, sets of volume 0 are of an interest because we can ignore them in integrals. A formal
definition is given in the book10, but roughly speaking, a set X has volume 0 if it is possible to cover
X with cubes of arbitrarily small total volume.

5.3 Change of coordinates
Suppose we have an integral over some region R which is ugly in the normal coordinate space (“X-
space”) but easy to describe over a “U-space” (instead ofX-space). Let’s say the relation between the
U-space and the X-space is described by x = γ(u).

Zoom into a single point (u, v) in theU-space. The box defined by (u, v), (u+∆u, v), (u, v+∆v)

maps to a distorted box defined by γ(u, v), γ(u+∆u, v), γ(u, v +∆v).
The length of the spanning vectors of the distorted box are

a = γ(u+∆u, v)− γ(u, v) = Duγ(u, v)∆u+O(∆u2)

b = γ(u, v +∆v)− γ(u, v) = Dvγ(u, v)∆v +O(∆v2)

10Proposition 4.1.23
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so as ∆u,∆v → 0, the volume of the distorted box is

vol2P ∼ | det Dγ(u, v)|∆u∆v

so the correction factor for distortion under γ is

| det Dγ(u, v)|.

Definition 5.12 (Polar coordinates).
Polar coordinates describe a point in a plane by its distance r from the origin and its angle.(

x

y

)
=

(
r cos θ
r sin θ

)
=: γ

(
r

θ

)
.

We have

Dγ
(
r

θ

)
=

[
cos θ −r sin θ
sin θ r cos θ

]

so
∣∣∣∣∣det Dγ

(
r

θ

)∣∣∣∣∣ = r.

Example 5.13. We will try to find the area of the region R bounded by x2

a2 + y2

b2 = 1. Define
x = ar cos θ, y = br sin θ. Then our boundaries are r ∈ [0, 1] and θ ∈ [0, 2π] and our correction
factor is

det
∣∣∣∣∣a cos θ −ar sin θ
b sin θ br cos θ

∣∣∣∣∣ = abr,

hence ∫
R

1|d2(x, y)| =
∫ 1

0

∫ 2π

0

1 · abr dθ dr =
∫ 1

0

2πabr dr = abπ.

Exercise 5.14. Compute
∫
DR

(x2 + y2) dx dy, where DR =

{(
x

y

)
∈ R2

∣∣x2 + y2 ⩽ R2

}
.

Solution. Transforming to polar coordinates, we have∫
DR

(x2 + y2) dx dy =

∫ R

0

∫ 2π

0

r2 · r dθ dr =
∫ R

0

2πr3 dr =
1

2
πR4.

Definition 5.15 (Spherical coordinates).
Spherical coordinates describe a point in space by its distance ρ from the origin, its longitude θ, and
its latitude ϕ: xy

z

 =

ρ cos θ cosϕ
ρ sin θ cosϕ
ρ sinϕ

 =: S

ρθ
ϕ



We have

∣∣∣∣∣∣∣det DS

ρθ
ϕ


∣∣∣∣∣∣∣ = ρ2 cosϕ.
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Definition 5.16 (Cylindrical coordinates).
Cylindrical coordinates describe a point in space by its z-coordinate and its polar coordinate on the
xy-plane: xy

z

 =

r cos θ
r sin θ
z

 =: C

rθ
z

 .

We have

∣∣∣∣∣∣∣det DC

rθ
z


∣∣∣∣∣∣∣ = r.

6 Forms and Vector calculus
Quick note on this section: vector calculus is traditionally the study of vector fields in R3. Exterior
calculus / forms, which comes later, generalizes vector calculus to all dimensions Rn. However, for
this note I think it makes more sense to go over the language of exterior calculus / forms first.

Previously we have done more and more general integrals:
↑ Less general
• Riemann integral in Rn, over a box
• Riemann integral in Rn, over “well-behaved” subsets of Rn

• Riemann integral in Rn, w.r.t. various coordinate systems

x = Φ(u) ⇒
∫
f(x) dx =

∫
f(Φ(u))| det DΦ(u)||dnu|

• Next step: allow Φ to be any parametrization Φ : U → Rn where U ⊆ Rk with k < n.
↓ More general
How do we accomplish this next step? We need to find an appropriate correction factor. The

Jacobian DΦ is not a square matrix anymore, so we can’t simply use the determinant.

6.1 Forms
To find the correct correction factor, we need to generalize the concept of a determinant, and this
comes in form of k-forms, first discussed in the last days of MA661.

Definition 6.1.
A k-form on Rn is an anti-symmetric multilinear function (Rn)

k taking in k vectors and returning
a number. The set of k-forms is donated as Ak

c (Rn).

Example 6.2. The 2-form dx1 ∧ dx2 takes in two vectors and outputs the determinant of the square
matrix formed by the first and second entries of the vectors.

dx1 ∧ dx2




1

2

−1

1

 ,


3

−2

1

2


 =

∣∣∣∣∣1 3

2 −2

∣∣∣∣∣ = −8

Exercise 6.3 (6.1.3 in book). Compute the following numbers:
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(a) dx1 ∧ dx4



1

0

1

2

 ,


1

−3

−1

2


 =

∣∣∣∣∣1 1

2 2

∣∣∣∣∣ = 0.

(d) dx1 ∧ dx2 ∧ dx2 (something) = 0 because dx2 is repeated.

Definition 6.4.
dx1 ∧ dx2 is an example of elementary k-forms: those of the form

dxi1 ∧ dxi2 ∧ · · · ∧ dxik , i1 < i2 < · · · < ik.

Example 6.5. There are 24 elementary k-forms in R4, corresponding to subsets of {1, 2, 3, 4}:

1, dx1, · · · , dx4, dx1∧dx2, · · · , dx3∧dx4, dx1∧dx2∧dx3, · · · , dx2∧dx3∧dx4, dx1∧dx2∧dx3∧dx4.

Since k-forms can be added together or multiplied by a scalar, they form a vector space. As the
last example illustrates, the vector space of k-forms in Rn has dimension

(
n
k

)
.

Let x be a point, and v1, v2, . . . , vk be vectors in Rn. Then, Px(v1, . . . , vk) is the parallelogram
spanned by (v1, . . . , vk) attached to point x.

Definition 6.6.
A k-form field in Rn is just a field of k-forms attached to each point of Rn. In other words, it is like
a k-form, but the scalars depend on (x1, . . . , xn). k-form fields take in anchored parallelograms and
return a number.

Example 6.7. ϕ = 3dx1 ∧ dx3 is a 2-form; ω = ex+ydx ∧ dy is a 2-form field.

Example 6.8. cos(xz)dx ∧ dy is a 2-form field on R3. As an example of evaluation,

cos(xz)dx ∧ dy


P

1

2

π




10
1

 ,
22
3





= cos(1 · π)
∣∣∣∣∣1 2

0 2

∣∣∣∣∣ = −2.

We used the wedge ∧ symbol in our notation for k-forms. This represents a wedge product, which
has the following formal definition, which I guess comes from the need to make sure that ∧ preserves
antisymmetry as well as multilinearity.

Definition 6.9.
The wedge product of the forms ϕ ∈ Ak

c (Rn) and ω ∈ Aℓ
c(Rn) is the element ϕ ∧ ω ∈ Ak+ℓ

c (Rn)

defined by

(ϕ ∧ ω)(v1, v2, . . . , vk+l) =
∑

σ permutes {1,2,...,k+ℓ}
σ(1)<···<σ(k)

σ(k+1)<···<σ(k+ℓ)

sgn(σ)ϕ(vσ(1), . . . , vσ(k))ω(vσ(k+1), . . . , vσ(k+ℓ)).

Example 6.10. The wedge product of ϕ ∈ A2
c(Rn) and ω ∈ Ac(Rn) is

ϕ ∧ ω(v1, v2, v3) = ϕ(v1, v2)ω(v3)− ϕ(v1, v3)ω(v2) + ϕ(v2, v3)ω(v1).
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Exercise 6.11 (6.1.11 in book). Let ϕ and ψ be 2-forms. Write out ϕ ∧ ψ(v1, v2, v3, v4).

Answer:

ϕ ∧ ψ(v1, v2, v3, v4) = ϕ(v1, v2)ψ(v3, v4)− ϕ(v1, v3)ψ(v2, v4) + ϕ(v1, v4)ψ(v2, v3)

+ ϕ(v2, v3)ψ(v1, v4)− ϕ(v2, v4)ψ(v1, v3) + ϕ(v3, v4)ψ(v1, v1)

6.2 Integrals over parametrized manifolds
Using the language of forms, we can now describe integrals over parametrized manifolds.

Definition 6.12 (Integrating a k-form field, 6.2.1 in book).
Let U ⊂ Rk be a bounded open set with boundary of volume 0. Let V ⊂ Rn be open, and let [γ(U)]

be a parametrized domain in V . Let φ be a k-form field on V . Then the integral of φ over [γ(U)] is∫
[γ(U)]

φ :=

∫
U

φ
(
Pγ(U) (D1γ(u), . . . ,Dkγ(u))

)
Example 6.13 (6.2.4 in book). We will integrate dx∧ dy+ y dx∧ dz over the parametrized domain

γ

(
s

t

)
=

s+ t

s2

t2

 , S =

{(
s

t

)∣∣∣0 ⩽ s ⩽ 1, 0 ⩽ t ⩽ 1

}
.

We find

∫
[γ(S)]

dx∧ dy+ y dx∧ dz =
∫ 1

0

∫ 1

0

(dx∧ dy+ y dx∧ dz)


P

s+ t

s2

t2




 1

2s

0

 ,
 1

0

2t




ds dt

=

∫ 1

0

∫ 1

0

(
det
[
1 1

2s 0

]
+ s2 det

[
1 1

0 2t

])
ds dt =

∫ 1

0

∫ 1

0

(−2s+ 2s2t) ds dt = −2

3
.

Exercise 6.14 (6.2.1 in book). Set up each of the following integrals of form fields over parametrized
domains as an ordinary multiple integral.

a.
∫
[γ(I)]

x dy + y dz, where I = [−1, 1] and γ(t) = (sin t, cos t, t).
b.
∫
[γ(U)]

x1 dx2 ∧ dx3 + x2 dx3 ∧ dx4, where U =
{(

u
v

)∣∣0 ⩽ u, v;u+ v ⩽ 2
}

and γ
(
u
v

)
=

(uv, u2 + v2, u− v, ln(u+ v + 1)).

Solution. a.

∫
[γ(I)]

x dy + y dz =

∫ 1

0

(x dy + y dz)


P

sin t
cos t
t




 cos t
− sin t

1





|dt|

=

∫ 1

0

(− sin2 t+ cos t)|dt|

35



b. ∫
[γ(U)]

x1 dx2 ∧ dx3 + x2 dx3 ∧ dx4

=

∫
U

(x1 dx2∧dx3+x2 dx3∧dx4)


P

uv

u2 + v2

u− v

ln(u+ v + 1)






v

2u

1
1

u+v+1

 ,


u

2v

−1
1

u+v+1





|du dv|

=

∫ 2

0

∫ 2−u

0

uv(−2u− 2v) + (u2 + v2)
2

u+ v + 1
dv du

Exercise 6.15 (6.2.2 in book). Repeat 6.2.1 for
∫
[γ(U)]

x dy ∧ dz where U = [−1, 1] × [−1, 1] and
γ
(
u
v

)
= (u2, u+ v, v3)

Solution.

∫
[γ(U)]

x dy ∧ dz =
∫ 1

−1

∫ 1

−1

(x dy ∧ dz)


P

u2

u+ v

v3




2u1
0

 ,
 0

1

3v2





|du dv|

=

∫ 1

−1

∫ 1

−1

3u2v2|du dv|

Exercise 6.16 (6.2.4 in book). Let z1 = x1 + iy1, z2 = x2 + iy2 be coordinates in C2. Let S ⊂ C
be the square {z = x+ iy | |x| ⩽ 1, |y| ⩽ 1}, and define γ : S → C2 by

γ : z 7→
(
ez

e−z

)
, z = x+ iy, |x| ⩽ 1, |y| ⩽ 1.

What is
∫
[γ(S)]

dx1 ∧ dy1 + dy1 ∧ dx2 + dx2 ∧ dy2?

Solution. First we note that ez = ex(cos y + i sin y) and e−z = e−x(cos y − i sin y) so γ sends
(
x
y

)
to


ex cos y
ex sin y
e−x cos y
−e−x sin y

 . Therefore,

∫
[γ(S)]

dx1 ∧ dy1 + dy1 ∧ dx2 + dx2 ∧ dy2

=

∫ 1

−1

∫ 1

−1

dx1∧dy1+dy1∧dx2+dx2∧dy2


P

ex cos y
ex sin y
e−x cos y
−e−x sin y






ex cos y
ex sin y

−e−x cos y
e−x sin y

 ,


−ex sin y
ex cos y

−e−x sin y
−e−x cos y





|dx dy|
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=

∫ 1

−1

∫ 1

−1

∣∣∣∣∣ex cos y −ex sin y
ex sin y ex cos y

∣∣∣∣∣+
∣∣∣∣∣ ex sin y ex cos y
−e−x cos y −e−x sin y

∣∣∣∣∣+
∣∣∣∣∣−e−x cos y −e−x sin y
e−x sin y −e−x cos y

∣∣∣∣∣ |dx dy|
=

∫ 1

−1

∫ 1

−1

e2x − sin2 y + cos2 y + e−2x|dx dy|

=

∫ 1

−1

∫ 1

−1

e2x + e−2x + cos 2y |dx dy|

=

∫ 1

−1

2e2x + 2e−2x dx+

∫ 1

−1

2 cos 2y dy

=
(
e2x − e−2x

)1
x=−1

+ (sin 2y)1y=−1 = 2e2 − 2e−2 + 2 sin 2

Exercise 6.17 (6.2.5 in book). Let S : {z ∈ C | |z| < 1} be the interior of the unit circle in the

complex plane. Define γ : S → C3 by γ : z 7→

 z

z2

z3

. What is
∫
[γ(S)]

dx1 ∧ dy1 + dx2 ∧ dy2 +

dx3 ∧ dy3?

6.3 Orientation
We have just calculated integrals without caring for the sign, and everything seemed fine. Why, then,
should we care about signs? The answer is that the integrals we have calculated implicitly depended
on the parametrization, and especially the boundaries of the domain.

In order to integrate forms over manifolds and get a consistent result no matter the parametrization,
we need to define orientation. Now what is an orientation?

An orientation of a manifold is simply a way to distinguish between the “two sides” of a manifold:
inside or outside of a sphere, the +z or −z side of the xy-plane, or (insert more examples).

Obviously this relies on the manifold actually having two sides. For manifolds with one side,
such as the Mobius strip, we just ... don’t care about them. They are not orientable.

Some technical definitions follow. Honestly, feel free to skip this part.

Definition 6.18 (Orientation of vector spaces).
Let V be a finite-dimensional real vector space, and let BV be the set of bases of V . An orientation
of V is a map Ω : BV → {+1,−1} such that if B and B′ are two bases with change of basis matrix
[ΦB′→B ], then

Ω(B′) = sgn (det[ΦB′→B ]) Ω(B).

A basis B ∈ BV is called direct if Ω(B) = +1; it is called indirect otherwise.

Conventionally, in Rn, the orientation should be defined so that the standard basis is direct. As
a result, Φ(B) = sgn(det[B]). This is called the standard orientation

Reflection changes orientation, but rotation and translation does not. (Think of a mirror).
Orienting manifolds is a more generalized version of orienting vector spaces: we need to select

an orientation for every tangent space, and it must vary continuously.

Definition 6.19 (Orientation of manifolds).
Let M be a manifold. For a point x ∈ M , let Bx(M) denote the set of bases of the tangent space
TxM toM at x. Let B(M) be the set of all “vectors” of the form (x, v1, . . . , vn) where (v1, . . . , vn) ∈
Bx(M).
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Then, an orientation of a k-dimensional manifoldM ⊂ Rn is a continuous map11 from B(M) →
{+1,−1} such that the restrictions to Bx(M) determines an orientation of Tx(M).

That doesn’t really help in understanding how to actually orient a manifold; here are some specific
examples.

Proposition 6.20 (6.3.4 in book). 1. Points. An orientation for a 0-dimensional manifold in Rn,
i.e. a discrete set of points, is simply an assignment of either +1 or −1 to each of the points.

2. Open subsets of Rn. An open subset in Rn simply carries the standard orientation of Rn.
3. Curves. Let C ⊂ Rn be a smooth curve. A non-vanishing tangent vector field t that varies

continuously with x defines an orientation

Ωt
x(v) := sgn(t(x) · v).

4. Surfaces inR3. For each point x on the surface, add a transverse vector n(x) that is continuous
as x varies and is not in the tangent space. Then we can define an orientation Ωn of S by

Ωn(v1, v2) := sgn(det[n(x), v1, v2]).

Exercise 6.21. Find a vector field that orients the curve given by x+ x2 + y2 = 2.

Solution. (Using parametrization) Rewrite the equation as
(
x+ 1

2

)2
+ y2 = 9

4 , so we have the
parametrization

Γ : t 7→
(− 1

2 + 3
2 cos t

3
2 sin t

)
, t ∈ [0, 2π]

The tangent vectors are given by the Jacobian

DΓ :

[
− 3

2 sin t
3
2 cos t

]

and since we are always going counterclockwise, these vectors point in the right direction. Therefore

the vector field F (t) :=
[
− sin t
cos t

]
works.

(Using equation) The kernel of the Jacobian gives[
ẋ

ẏ

]
=

[
2y

−(2x+ 1)

]

as another possible vector field.

Example 6.22 (6.3.12 in book). Consider the manifoldM ⊂ R4 of equation x21+x22+x23−x4 = 0.
Find a basis for the tangent space to M at the point p = (1, 0, 0, 1) that is direct for the orientation
... ?

First we find
DT (p) =

[
2x1 2x2 2x3 −1

]
p
=
[
2 0 0 −1

]
11Huh. Continuous map to a discrete set?!?
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The tangent space TpM is then given by the kernel of DT (p), which is exactly set of vectors x

where


2

0

0

−1

 · x = 0. As a result,


2

0

0

−1

 is a transverse vector and can be used for orientation: a basis

v1, v2, v3 of TpM has the same sign as det




2

0

0

−1

 , v1, v2, v3
 .

Consider the basis



0

1

0

0

 ,

0

0

1

0

 ,

1

0

0

2


 of TpM . We have

det


2 0 0 1

0 1 0 0

0 0 1 0

−1 0 0 2

 = 5 > 0

so this basis works.

Example 6.23 (Using parametrization). The manifold M from the previous question can also be
described by the parametrization

γ

st
u

 :=


s

t

u

s2 + t2 + u2


so

Dγ

st
u

 =


1 0 0

0 1 0

0 0 1

2s 2t 2u

 .

At

st
u

 =

1

0

0

, this generates the basis



0

1

0

0

 ,

0

0

1

0

 ,

1

0

0

2


 . The rest follows the previous

example.

Exercise 6.24 (6.4.1 in book). If the cone M of equation f

xy
z

 : x2 + y2 − z2 = 0 is oriented by

∇f 12, does the parametrization γ :

(
r

θ

)
7→

r cos θ
r sin θ
r

 preserve orientation?

12which is defined as simply DfT
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Solution. At a point p =

xy
z

, we find∇f(p) =

 2x

2y

−2z

. We also find Dγ
(
r

θ

)
=

cos θ −r sin θ
sin θ r cos θ
1 0

.

Assuming M is orientable, it suffices to check one point on M , so we will choose

1

0

1

, repre-

sented by
(
r

θ

)
=

(
1

0

)
. At this point, we have

det

 2 1 0

0 0 1

−2 1 0

 = −4 < 0,

so γ is not orientation preserving. If we want to find an orientation preserving parametrization we
can, say, switch the first and second rows of γ.

Exercise 6.25 (6.4.4 in book). What is the integral
∫
S
x3 dx1 ∧ dx2 ∧ dx4, where S is the part of

the three-dimensional manifold of equation

x4 = x1x2x3 where 0 ⩽ x1, x2, x3 ⩽ 1,

oriented by Ω = sgn dx1 ∧ dx2 ∧ dx3?

Solution. Consider the standard parametrization γ :

uv
w

 7→


u

v

w

uvw

. We compute

Dγ

uv
w

 =


1 0 0

0 1 0

0 0 1

vw wu uv

 ,
so

Ω




1

0

0

vw

 ,


0

1

0

wu

 ,

0

0

1

uv


 = sgn

∣∣∣∣∣∣∣
1 0 0

0 1 0

0 0 1

∣∣∣∣∣∣∣ = +1

which means γ preserves the correct orientation. Now

∫
S

x3 dx1 ∧ dx2 ∧ dx4 =

∫ 1

0

∫ 1

0

∫ 1

0

w

∣∣∣∣∣∣∣
1 0 0

0 1 0

vw wu uv

∣∣∣∣∣∣∣ dw dv du

=

∫ 1

0

∫ 1

0

∫ 1

0

uvw dw dv du =
1

8
.

Exercise 6.26 (6.4.5 in book). Let z1 = x1 + iy1, z2 = x2 + iy2 be coordinates in C2. Compute
the integral of dx1 ∧ dy1 + dy1 ∧ dx2 over the part of the locus of equation z2 = zk1 where |z1| < 1,
oriented by Ω = sgn dx1 ∧ dx2.
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Solution. LetS denote the region in question. Consider the parametrization γ :

(
r

θ

)
7→


r cos θ
r sin θ
rk cos kθ
rk sin kθ

 .

We compute Dγ
(
r

θ

)
=


cos θ −r sin θ
sin θ r cos θ

krk−1 cos kθ −krk sin kθ
krk−1 sin kθ krk cos kθ

, so

Ω

(
Dγ
(
r

θ

))
= r > 0

hence γ is orientation preserving. Therefore∫
S

dx1 ∧ dy1 + dy1 ∧ dx2 =

∫ 1

0

∫ 2π

0

∣∣∣∣∣cos θ −r sin θ
sin θ r cos θ

∣∣∣∣∣+
∣∣∣∣∣ sin θ r cos θ
krk−1 cos kθ −krk sin kθ

∣∣∣∣∣ dθ dr
=

∫ 1

0

∫ 2π

0

r − krk(sin θ sin kθ + cos θ cos kθ) dθ dr

=

∫ 1

0

∫ 2π

0

r − krk cos(k − 1)θ dθ dr

=

∫ 1

0

2πr dr −
∫ 1

0

krk

k − 1
sin(2π(k − 1)) dr

= π − k

k2 − 1
sin(2πk) = π for k ∈ Z.

Digression: Complex functions
Assume z, a, c ∈ C, r ∈ R.

• z 7→ z + a translates the complex plane by the vector a.
• z 7→ cz is a rotation by arg c and scaled by |c|.
• z 7→ z is a reflection over the real axis.
• z 7→ ez scales 1 by eℜ(z) and then rotates by ℑ(z).
From eiz = cos z + i sin z and e−iz = cos z − i sin z, we have

cos z = eiz + e−iz

2
and sin z = eiz − e−iz

2i
.

Therefore, cos iz = cosh z and sin iz = −i sinh z.

6.4 Boundaries on manifolds
I guess mathematicians are naturally curious, and hence for some reason they decided to see if there
is any relation between an integral on a boundary of a (piece of ) manifold, and an integral on the
piece of manifold itself. Turns out there is!
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Definition 6.27 (Boundary of a subset of a manifold, 6.6.1 in book).
Let M ⊂ Rn be a k-dimensional manifold, and X ⊂M a subset. The boundary ofX inM , written
∂MX , is the set of points x ∈M such that every neighborhood of x contains points ofX and points
of M −X .

As sets of points with volume 0 do not matter in an integral, it suffices to consider smooth points.

Definition 6.28.
A smooth point of a boundary of a manifold is a point on a section of the boundary that can be
described by a C1 function.

Exercise 6.29 (6.6.1 in book). Verify that the following inequalities describe a piece-with-boundary
of R3

a. xyz ⩽ 1, x2 + y2 + z2 ⩽ 4

b. xyz ⩽ 1, x2 + y2 + z2 ⩽ 4, x+ y + z ⩾ 0

Boundary orientation:
• Let X be a piece-with-boundary of manifold M .
• Let ∂MX be the boundary of X in M and p ∈ ∂MX .
• An orientation of Tp∂MX is given by an outward-pointing vector vout at p: if
(v1, v2, . . . , vk−1) is the basis of the boundary tangent space, then (vout, v1, v2, . . . , vk−1)

should be a direct basis of Tp∂M .

Exercise 6.30 (6.6.5 in book). Consider the region X = P ∩ B ∈ R3, where P is the plane of

equation x+ y+ z = 0 and B is the ball x2 + y2 + z2 ⩽ 1. Orient P by the normal N =

11
1

 and

orient the sphere x2 + y2 + z2 = 1 by the outward-pointing normal.
a. Which of sgn dx ∧ dy, sgn dx ∧ dz, sgn dy ∧ dz give the same orientation of P as N?
b. Show that X is a piece-with-boundary of P and that the mapping

γ : t 7→


cos t√

2
− sin t√

6

− cos t√
2
− sin t√

6
2 sin t√

6


for 0 ⩽ t ⩽ 2π, is a parametrization of ∂X .

c. Is the parametrization in part b. compatible with the boundary orientation of ∂X?
d. Do any of sgn dx, sgn dy, sgn dz define the orientation of ∂X at every point?
e. Do any of sgn x dy − y dx, sgn x dz − z dx, sgn y dz − z dy define the orientation of ∂X at

every point?

Solution. a. Consider the basis BP =


 1

−1

0

 ,
 1

0

−1


 . As

∣∣∣∣∣∣∣
1 1 1

1 −1 0

1 0 −1

∣∣∣∣∣∣∣ = 3 > 0, this basis

gives the direct orientation. We can check that

(dx ∧ dy)BP = 1, (dx ∧ dz)BP = −1, (dy ∧ dz)BP = 1,

so only dx ∧ dy and dy ∧ dz give the same orientation as N.
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b. Intuitively,X is a closed disk in P . (We’ll skip the rigorous part for now.) Its boundary is given
by the solution to x + y + z = 0 and x2 + y2 + z2 = 1, so a point (x, y, z) in the boundary
satisfies

(x− y)2 + 3z2 = 2(x2 + y2 + z2)− (x+ y + z)(x+ y − z) = 2,

so we can write z =
√

2
3 sin t, x − y =

√
2 cos t for some t. Using this and x + y + z = 0

gives the desired parametrization, which is easy to verify.

c. Pick a point p = γ(0) =
(

1√
2
,− 1√

2
, 0
)

on ∂X . We have np = (1,−1, 0), so the tangent
vector with the correct orientation is w = (1, 1,−2) (found by setting (dx ∧ dy)(np,w) > 0,
or by w = N × n) Now Dγ(0) = − 1√

6
w, so γ gives the wrong orientation.

d. We guess the answer is no

e. We find Dγ =

−
sin t√

2
− cos t√

6
sin t√

2
− cos t√

6

2 cos t√
6

 so

x dy−y dx =

(cos t√
2

− sin t√
6

)( sin t√
2

− cos t√
6

)
−
(
− cos t√

2
− sin t√

6

)(
− sin t√

2
− cos t√

6

)
= − 1√

3
,

x dz − z dx =
1√
3
, and y dz − z dy = − 1√

3

so all three define the orientation of ∂X at every point

Exercise 6.31. a. Let M ⊂ R4 be a manifold defined by the equation x4 = x21 + x22 + x23 and
oriented by sgn dx1 ∧ dx2 ∧ dx3. Consider the subset X ⊂M where x4 ⩽ 1. Show that it is
a piece-with-boundary

b. Let x be a point of ∂MX . Find a basis for the tangent space Tx∂MX that is direct for the
boundary orientation.

Solution. a. Informally, the boundary of X is given by the equations x4 = 1 = x21 + x22 + x23,
which is a C1 function, and so X is a piece-with-boundary.

b. The manifold is given the parametrization γ :

x1x2
x3

 7→


x1
x2
x3

x21 + x22 + x23

 so

Dγ =


1 0 0

0 1 0

0 0 1

2x1 2x2 2x3



so sgn dx1 ∧ dx2 ∧ dx3 = +1 always. To orient ∂MX at a point x =


x1
x2
x3
1

 we pick vout =


x1
x2
x3
2

. Now, for v1, v2, as we can swap variables or vectors and switch signs, WLOG x1 > 0.
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Pick v1 =


x3
0

−x1
0

 , v2 =


x2
−x1
0

0

. This gives dx1∧dx2∧dx3 = x1, so sgn dx1∧dx2∧dx3 =

+1.

6.5 Exterior Derivatives
Exterior derivatives are generalizations of (normal) derivatives to apply to forms; their main purpose
seems to be to allow the Fundamental Theorem (see next section) to be stated elegantly.

Definition 6.32 (Exterior derivative).
Let U ∈ Rn be an open subset. The exterior derivative d : Ak(U) → Ak+1(U) is defined by the
formula

dφ(Px(v1, . . . , vk+1)) := lim
h→0

1

hk+1

∫
∂Px(hv1,...,hvk+1)

φ.

Exercise 6.33. Let φ = −y dx+ x dy. Calculate dφ directly from the definition.

Solution. Recall
dφ = lim

h→0

∫
∂P
(x
y
)
(hu,hv)

φ

Consider the parallelogram formed by hu and hv; let u = (u1, u2) and v = (v1, v2). There are
four sections: +hu,+hv,−hu, and −hv. [I should probably put a pic here] Now we find the integral
of each part:

• the +hu part P1 is parametrized by γ(t) =
(
x
y

)
+ thu, t ∈ [0, 1], so Dγ(t) = hu. Therefore∫

P1

−y dx+ x dy =

∫ 1

0

−(y + thu2)hu1 + (x+ thu1)hu2 dt = −yhu1 + xhu2.

• the +hv part P2 is parametrized by γ(t) =
(
x
y

)
+ hu+ thv, t ∈ [0, 1], so Dγ(t) = hv. Hence∫

P2

−y dx+ x dy =

∫ 1

0

−(y + hu2 + thv2)hv1 + (x+ hu1 + thv1)hv2 dt

= −yhv1 + xhv2 − h2u2v1 + h2u1v2.

• the −hu part P3 is parametrized by γ(t) =
(
x
y

)
+ hv + thu, t ∈ [1, 0], so Dγ(t) = hu. So∫

P3

−y dx+x dy =

∫ 0

1

−(y+hv2+thu2)hu1+(x+hv1+thu1)hu2 = yhu1−xhu2+h2u1v2−h2u2v1

• the −hv part P4 is parametrized by γ(t) =
(
x
y

)
+ thv, t ∈ [1, 0], so Dγ(t) = hv. Therefore∫

P4

−y dx+ x dy =

∫ 0

1

−(y + thv2)hv1 + (x+ thv1)hv2 = yhv1 − xhv2.

Summing everything up, we have∫
∂P
(x
y
)
(hu,hv)

φ = 2h2(u1v2 − u2v1).
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In practice it is much easier to compute the exterior derivate using rules:

Theorem 6.34 (Computing the exterior derivative; 6.7.4 in book). • The exterior derivative of a
function f is given by

df = [Df ] =
n∑

i=1

(Dif)dxi

• If f : U → R is a C2 function, then

d (f dxi ∧ · · · ∧ dxj) = df ∧ dxi ∧ ∧ · · · dxj

6.6 Stokes’ Theorem
We are ready to present the Fundamental Theorem (of multivariable calculus), otherwise known as
(Generalized) Stokes’ Theorem.

Theorem 6.35 (Stokes’ Theorem). Let R be a piece-with-boundary of a k-dimensional oriented smooth
manifoldM in Rn. Give the boundary ∂R ofR the boundary orientation, and let φ be aC2 (k−1)-form
defined on an open set containing R. Then ∫

R

dφ =

∫
∂R

φ

Example 6.36. Given φ = −y dx+ x dy, we have dφ = 2 dx ∧ dy so∫
∂R

φ =

∫
R

dφ = 2vol(R)

The unit circle, for example, is parametrized by γ(t) =
(

cos t
sin t

)
, t ∈ [0, 2π], so Dγ(t) =

[
−R sin t
R cos t

]
,

hence

vol(unit circle) = 1

2

∫
unit circle

−y dx+ x dy =
1

2

∫ 2π

0

sin2 t+ cos2 t = 1

2
· 2π = π.

Stokes’ theorem is a generalization of the Fundamental Theorem of (single-variable) calculus:

f(b)− f(a) =

∫
{−a,+b}

d =

∫
[a,b]

f =

∫ b

a

f ′(x) dx.

Quick review of integrals:
↑ Less general
• Riemann sums in Rn; bounded functions with bounded support; density → total amount
... What if we don’t have a cartesian coordinate system?
• Change-of-variables, correction factors to account for distortions: | det DΦ|
... What if I have a region in Rn parametrized in Rk; k < n?
• Integrate k-forms over parametrized domains in Rn

... Under what changes of parameters is the integral invariant?
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• Integrals depend on orientation: the order of the basis vectors in TpM .
... Is there a connection between

∫
X
φ and some integral on the boundary ∂φ?

• Exterior derivatives and Stokes’ theorem.
↓ More general

6.7 Vector calculus: work, flux, and mass forms
These two subsections serve to introduce the terminology of vector calculus in case we should ever
need them.

Recap: 0-forms in Rn assign a value to each point in Rn, and are simply functions f : Rn → R.
A form looks like this: 3 dx ∧ dy + 4 dy ∧ dz. They are evaluated on a tuple of vectors.
A form field looks like this: ex+z dx ∧ dy + 4 sin(x/y) dy and resolves to different forms at

different points. They are evaluated on parallelograms, that is, a point and a tuple of vectors.
Every 1-form is the work form of a vector field.

Definition 6.37 (Work form, 6.5.1 in book).
The work form WF of a vector field F is F(x) · Dx = F1 dx+ F2 dy + · · ·

Definition 6.38 (Work, 6.5.5 in book).
The work of a vector field F along an oriented curve C is

∫
C
WF.

Example 6.39. We will find work of F

xy
z

 =

 y

−x
0

 done over the helix γ(t) =

cos t
sin t
t

 , t ∈

[0, 4π] and oriented by the tangent vector field t =

− sin t
cos t
1

.

First we check orientation: since t = γ′(t), t · γ′(t) > 0 so this parametrization preserves
orientation. Therefore,

∫
C

WF =

∫ 4π

t=0

(y dx− x dy)


P

cos t
sin t
t




− sin t

cos t
1




dt

=

∫ 4π

0

sin t(− sin t)− cos t cos t dt =
∫ 4π

0

−1 dt = −4π.

Exercise 6.40 (6.5.18 in book). Find the work of F

xy
z

 =

x2y2
z2

 over the arcC of helix parametrized

by γ : t 7→

cos t
sin t
at

 for 0 ⩽ t ⩽ α, and oriented so that γ is orientation preserving.
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Example 6.41. We have WF = x2 dx+ y2 dy + z2 dz so

∫
C

WF =

∫ α

0

(x2 dx+ y2 dy + z2 dz)


P

cos t
sin t
at




− sin t

cos t
a




dt

=

∫ α

0

− cos2 t sin t+ sin2 t cos t+ a3t2 dt

=
1

3

(
cos3 t+ sin3 t+ a3t3

) ∣∣α
0

=
1

3

(
cos3 α+ sin3 α+ a3α3 − 1

)
Definition 6.42 (Flux form).
Given a vector field F on R3, the flux form ΦF is the 2-form field

ΦF (Px(v,w)) := det[F(x), v,w]

Definition 6.43 (Flux).
The flux of a vector field F over an oriented surface S is

∫
S
ΦF.

Definition 6.44 (Mass form).
Let U be a subset of R3 and f : U → R a function. The mass form Mf is the 3-form defined by

Mf (Px(v1, v2, v3)) := f(x) det[v1, v2, v3]

Summary: let f be a function on R3 and F =

F1

F2

F3

 a vector field. Then

WF = F1 dx+ F2 dy + F3 dz

ΦF = F1 dy ∧ dz − F2 dx ∧ dz + F3 dx ∧ dy

Mf = f dx ∧ dy ∧ dz

Also see table 6.5.6

Exercise 6.45 (6.5.1 in book).

Answer: (Work form: a, j, l) (Work: b, i) (Flux form: d, k, h) (Flux: c, e, f ) (Mass form: g)

Exercise 6.46 (6.5.3 in book). a. → ΦF (Px(v1, v2))
b. →WF

c. →Mf (Px(v1, v2, v3))
d. ? to be clear, either v1 · (v2 × v3) , (v1 × v2) · v3, or (v1 · v2) v3, probably the former (=

det[v1, v2, v3])
e. ✓
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f. → ΦF = F1 dy ∧ dz − F2 dx ∧ dz + F3 dx ∧ dy

g. →WF (Px(v))
h. →Mf

i. ✓

Exercise 6.47 (6.5.4 in book). Show that ΦF×G =WF ∧WG

Solution. Let F =

F1

F2

F3

, G =

G1

G2

G3

. Then

F × G =

F2G3 − F3G2

F3G1 − F1G3

F1G2 − F2G1


Therefore

ΦF×G =
∑
cyc

(F2G3 − F3G2) dy ∧ dz.

As WF = F1 dx+ F2 dy + F3 dz and WG = G1 dx+G2 dy +G3 dz,

WF ∧WG =
∑
cyc

F1G1(dx ∧ dx) + F1G2(dx ∧ dy) + F1G3(dx ∧ dz)

=
∑
cyc

(F2G3 − F3G2) dy ∧ dz = ΦF×G.

6.8 Vector calculus: grad, curl, div
grad, curl, and div are the traditional vector calculus operators.

• For 0-forms we have

df = D1f dx1 + · · ·+Dnf dxn =:Wgrad f =W∇f .

• For 1-forms we have

dWF = d
(

n∑
i=1

Fi dxi

)
=

n∑
i=1

dFi dxi =

n∑
i=1

dFi ∧ dxi

=

n∑
i,j=1

Fi,jdxj ∧ dxi =
∑

1⩽i<j⩽n

(Fj,i − Fi,j)dxi ∧ dxj .

In R3, this gives the flux form of a vector field we define as the curl.

dWF =: Φcurl F = Φ∇×F

• For 2-forms in R3, we have

dΦF = d(F1 dy∧dz+F2 dz∧dx+F3 dx∧dy) = dF1∧dy∧dz+dF2∧dz∧dx+dF3∧dx∧dy

= (F1,x + F2,y + F3,z)dx ∧ dy ∧ dz =:Mdiv F =M∇·F
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Physical interpretations:
• As [Df(x)]v = ∇f · v = |∇f ||v| cos∠(∇f, v), grad f tells us the direction of the steepest

incline.
• for curl, see fig 6.8.2

Exercise 6.48 (6.8.1 in book). Notation review

Solution. a. i,ii: vector fields, iii, iv, v: numbers, vi: function
b. • grad f = ∇f

• curl F = ∇× F
• div F = ∇ · F
• df = D1f dx1 +D2f dx2 +D3f dx3 =W∇f =Wgrad f

• dWF = Φcurl F = Φ∇×F

• dΦF =Mdiv F =M∇·F

c. i → grad f , ii → curl F, iii → ΦF(v1, v2), iv →WF, v ✓,vi ✓

6.9 Review: exercises
Exercise 6.49 (6.10.1 in book). Let U be a compact piece-with-boundary of R3. Show that

vol3 U =

∫
∂U

1

3
(x dy ∧ dz + y dz ∧ dx+ z dx ∧ dy)

Solution. Let φ = 1
3 (x dy ∧ dz + y dz ∧ dx+ z dx ∧ dy). We have

dφ =
1

3
(dx ∧ dy ∧ dz + dy ∧ dz ∧ dx+ dz ∧ dx ∧ dy) = dx ∧ dy ∧ dz.

By Stokes’ theorem, ∫
∂U

φ =

∫
U

dφ =

∫
U

dx ∧ dy ∧ dz = vol3 U

Exercise 6.50 (6.10.2 in book). Let C be the part of the cone of equation z = a−
√
x2 + y2 where

z ⩾ 0, oriented by the upward-pointing normal. What is the integral∫
C

x dy ∧ dz + y dz ∧ dx+ z dx ∧ dy?

Solution. Let φ = x dy ∧ dz + y dz ∧ dx+ z dx ∧ dy, so dφ = 3dx ∧ dy ∧ dz. Let B be the base
plate z = 0;

√
x2 + y2 ⩽ a—B and C together form the boundary of the solid cone C. By Stokes’

theorem, ∫
C

φ = 3 vol3 C −
∫
B

φ,

but as z = 0 for all points in B,
∫
B
φ = 0, so∫

C

φ = 3 vol3 C = 3 · 1
3
· π · a2 · a = πa3.

Exercise 6.51 (6.10.3 in book). Compute the integral of x1 dx2 ∧ dx3 ∧ dx4 over the part of the
3-dimensional manifold of equation x1 + x2 + x3 + x4 = a where x1, x2, x3, x4 ⩾ 0, oriented so
that the projection to (x1, x2, x3)-coordinate 3-space is orientation-preserving.
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Solution. Let φ = x1 dx2 ∧ dx3 ∧ dx4, and let S be the simplex bounded by the plane P : x1 +

x2 + x3 + x4 = a and the four hyperplanes xi = 0. Using Stokes’ theorem,

vol4 S =

∫
S

dφ =

∫
∂S

φ =

∫
S∩P

φ+

4∑
i=1

∫
S∩{xi=0}

φ.

However, as φ contains all of x1, . . . , x4,
∫
S∩{xi=0} φ vanishes for all i, so∫

S∩P

dφ = vol4 S =
1

4!
a4.

Exercise 6.52 (6.11.1 in book). Let S be the torus obtained by rotating around the z-axis the circle
of equation (x− 2)2 + z2 = 1. Orient S by the outward-pointing normal. Compute

∫
S

ΦF, where F =

x+ cos(yz)
y + ex+z

z − x2y2

 .
Solution. We have ΦF = F1 dy ∧ dz + F2 dz ∧ dx+ F3 dx ∧ dy, so dΦ = 3 dx ∧ dy ∧ dz, hence∫

S

ΦF =

∫
S

dΦF = vol3 S = 4π2

where S is the solid torus bounded by S.

Exercise 6.53 (6.11.2 in book). Suppose U ⊂ R3 is open, F is aC1 vector field on U , and a is a point
of U . Let Sr(a) be the sphere of radius r centered at a, oriented by the outward-pointing normal.
Compute limr→0

1
r3

∫
Sr(a) ΦF.

Exercise 6.54 (6.10.4 in book). a. Show that the 2-form on R3 − {0} given by

φ =
x dy ∧ dz + y dz ∧ dx+ z dx ∧ dy

(x2 + y2 + z2)3/2

satisfies dφ = 0.

b. Compute
∫
S
φ, where S is the sphere of radius R ̸=

√
3 centered at

11
1

, oriented by the

outward-pointing normal. (The result depends on R, of course)

Solution. a. Define r =
√
x2 + y2 + z2, so

dφ = d
( x
r3
dy ∧ dz + y

r3
dz ∧ dx+

z

r3
dz ∧ dx

)
= dΦF

for F =
1

r3

xy
z

 , hence

dφ =Mdiv F =
(
D1

( x
r3

)
+D2

( y
r3

)
+D3

( z
r3

))
dx ∧ dy ∧ dz.

Note D1(r) =
x
r so D1

(
x
r3

)
= r3−3rx2

r6 , so

D1

( x
r3

)
+D2

( y
r3

)
+D3

( z
r3

)
=

1

r6
(
r3 − 3rx2 + r3 − 3ry2 + r3 − 3rz2

)
=

3

r6
(
r3 − r(x2 + y2 + z2)

)
= 0.
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b. If R <
√
3 then the ball B bounded by R does not contain the origin, so φ is C1 over B and

hence ∫
S

φ =

∫
B

dφ =

∫
B

0 = 0.

IfR >
√
3 then as dφ = 0 at every point except the origin, we can deform S to the unit sphere

C without changing the flux, though note that the Stokes’ Theorem is not applicable here
because φ is not continuous at the origin. Back to the problem, consider the parametrization

γ :

(
θ

ϕ

)
7→

cos θ cosϕ
sin θ cosϕ

sinϕ


of the unit sphere. We find

Dγ
(
θ

ϕ

)
=

− sin θ cosϕ − cos θ sinϕ
cos θ cosϕ − sin θ sinϕ

0 cosϕ

 .

At a point

cos θ cosϕ
sin θ cosϕ

sinϕ

, the outward-pointing normal is given by the same vector as the

point, so to check orientation, we verify that∣∣∣∣∣∣∣
cos θ cosϕ − sin θ cosϕ − cos θ sinϕ
sin θ cosϕ cos θ cosϕ − sin θ sinϕ

sinϕ 0 cosϕ

∣∣∣∣∣∣∣ = sinϕ(sinϕ cosϕ) + cosϕ(cosϕ2) = cosϕ > 0

as −π
2 < ϕ < π

2 Therefore∫
C

φ =

∫
C

x dy ∧ dz + y dz ∧ dx+ z dx ∧ dy

=

∫ π/2

−π/2

∫ 2π

0

(cos θ cosϕ)(cos θ cos2 ϕ) + (sin θ cosϕ)(sin θ cos2 ϕ) + sinϕ(sinϕ cosϕ) dθ dϕ

=

∫ π/2

−π/2

∫ 2π

0

cos3 ϕ(sin2 θ + cos2 θ) + cosϕ sin2 ϕ dθ dϕ

=

∫ π/2

−π/2

∫ 2π

0

cosϕ dθ dϕ

= 4π.

6.10 Review: a Princeton final
Problem 1. Let M ⊂ R3 be given by M = {(x, y, z) | x4 + 3y4 + 2z4 = 36} and consider the
function f :M → R given by f(x, y, z) = x+ 3y + 16

a. Prove that f attains a maximum value on M
b. Find this value and the point on M where it is attained.

Solution. a. A continuous function on a compact set attains a maximum value.
b. Lagrange multipliers
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Problem 3. Define f : R → R by f(x) = x3 + x, and let

R = {(x, y) ∈ R2 |
(
f−1(x)

)2
+
(
f−1(y)

)2 ⩽ 1}.

Find the area of R.

Solution. As f has an inverse, R is simply the image of the unit sphere when f is applied; the cor-
rection factor is simply Df . Alternatively, parametrize the boundary and use Stokes’ theorem.

Problem 4. Let M be the three-dimensional submanifold of R4 defined by

M = {(x, y, z, w) | x2 + y2 + z2 ⩽ 1, w = x− 1

3
y3 +

1

5
z5},

oriented so that the component of its normal vector in the w direction is positive. Compute∫
M

x2z2 dy ∧ dz ∧ dw + z2 dx ∧ dz ∧ dw + dx ∧ dy ∧ dw.

Problem 5. Let f : R2 → R3 and g : R3 → R5 be given by

f(x1, x2) = (x31 + x1, x1 + x2, x
2
2 + 1)

g(y1, y2, y3) = (y21 , y1y2, y
2
2 , y2y3, y

2
3)

and let h = g ◦ f . Find a basis for the tangent space to imh at h(1, 1)

Solution. Use the chain rule: D(g ◦ f)(x) = D(g)(f(x)) ◦ Df(x).

Problem 6. The function R4 → R is given by f(x1, x2, x3, x4) = x1x
2
3 + 2x22x

2
4.

a. If I’m standing at the point (1, 1, 2, 2), in which direction should I move to make F increase
as quickly as possible?

b. Same question, but now supposing that I am only allowed to move on the hypersurface

{(x1, x2, x3, x4) | x41 − x42 + 2x2x3 − 3x1x4 + x24

Solution. a. Just find ∇f .
b. Project ∇f onto the tangent space of f . An easy way is to find a vector v⊥ perpendicular to

the tangent space and find the v⊥-component v⊥∇f of ∇f ; the projection would simply be
∇f − v⊥∇f .

Problem 7. See Exercise 6.44 on page 49.
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