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Abstract

Course notes for Hotchkiss class MA661 (Linear Algebra). Proofs in here are not guar-
anteed to be rigorous. The sections are split according to tests and projects.
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1 Vector spaces

1.1 Properties
Example 1.1. (a) These are linear combinations in R3:

3
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0

−
√
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2
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sin 4cos 7
e12

 , −1

11
0

+ 12
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1
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1
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− 0
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(b) Some spans:

span


10
0

 ,
01
0


 is the xy-plane, span

([
1

1

])
is the line x = y

(c) The vectors
{[

1

1

]
,

[
1

−1

]}
are linearly independent because if

α

[
1

1

]
+ β

[
1

−1

]
= 0

then α+ β = α− β = 0 which implies α = β = 0.

(d) The vectors
{[

1

1

]
,

[
1

−1

]
,

[
2

3

]}
are not linearly independent (= are linearly depen-

dent) because

−5

[
1

1

]
+ 1

[
1

−1

]
+ 2

[
2

3

]
= 0

We’ll now start talking about vector spaces, which follow some properties of Rn (to be
exact, properties that can be proven without relying on the properties of R.)

Definition 1.2.
Any set V which satisfies the following axioms is called a vector space:

(i) (V,+) is an abelian group, i.e. V has an associative and commutative addition (+)with
identity element 0 and additive inverses.

(ii) Elements of V can be scaled by scalars (which are members of a field F ; in this class
we will only consider F = R,C).

(iii) For any α, β ∈ F,v,w ∈ V the following properties must hold:

1. (αβ)v = α(βv)
2. (α+ β)v = αv+ βv
3. α(v+w) = αv+ αw

Example 1.3. These are all vector spaces over R:

(a) C, and so is Cn.

(b) The set Pn(R) of polynomials in R[x] with degree at most n.
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(c) The set ofm× nmatrices with real entries.

(d) span(sinx, cosx) = {α sin(β + x) | α, β ∈ R}.

(e) R∞: the set of all real sequences

(f) Cn(R): the set of all n-continuously-differentiable functions on R.

(g) C∞(R): analytic functions on R.

(h) Set of step functions (= piecewise constant) on R.

Exercise 1.4. A collection of vectors in a vector space V containing0 is linearly dependent.

Solution. 1 · 0+ 0 · everything else = 0. ■

Exercise 1.5. A collection of vectors in a vector space V containing a duplicate is linearly
dependent.

Solution. 1 · v+ (−1) · v+ 0 · everything else = 0. ■

Exercise 1.6. Acollection (v1, · · · ,vk)of vectors is linearly independent iff anyw ∈ span(v1, · · · ,vk)
is a unique linear combination of (v1, · · · ,vk).

Solution. (⇒) If there are twoways, subtract them to get a way to represent0 as a nontrivial
linear combination of (v1, · · · ,vk). (⇐) If (v1, · · · ,vk) is linearly dependent then there are
> 1 ways to write 0 as a linear combination of (v1, · · · ,vk). ■

Exercise 1.7. A collection (v1, · · · ,vk) of vectors is linearly independent iff no vj can be
written as a linear combination of the others.

Solution. (⇒) If vj =
∑

i ̸=j αi · vi then −1 · vj +
∑

i ̸=j αi · vi = 0. (⇐) If (v1, · · · ,vk) is
linearly dependent then there is a way to write

∑
αi ·vi = 0without all αi’s being zero. Pick

αj ̸= 0 and write vj =
∑

i ̸=j
−αi

αj
· vi. ■

1.2 Subspaces
Definition 1.8.
Let V be a vector space andW ⊆ V . Then,W is called a subspace of V if

(i) W is closed under vector addition, and

(ii) W is closed under scalar multiplication.

Example 1.9. If v1, . . . ,vk ∈ V , then span(v1, . . . ,vk) is a subspace of V

Solution. Letw1,w2 ∈ span(v1, . . . ,vk), so there are scalars αi, βi’s such thatw1 =
∑
αivi

and w2 =
∑
βivi. Therefore, w1 + w2 =

∑
(αi + βi)vi ∈ span(v1, . . . ,vk) and γw1 =∑

(αiγ)vi ∈ span(v1, . . . ,vk). ■

Exercise 1.10. Let V = R2 and a, b ∈ R. Show that

W =

{[
x

y

]
∈ R2

∣∣∣∣ax+ by = 0

}

is a subspace of R2
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Solution. Letw1 =

[
x1
y1

]
,w2 =

[
x2
y2

]
∈W . (i)w1 +w2 =

[
x1 + x2
y1 + y2

]
satisfies

a(x1 + x2) + b(y1 + y2) = (ax1 + by1) + (ax2 + by2) = 0

sow1+w2 ∈W . (ii) for any real α, αw1 =

[
αx1
αx2

]
satisfies aαx1 + bαy1 = α(ax1 + by1) = 0

so αw1 ∈W . ■

Exercise 1.11. Show that

W =

{[
x

y

]
∈ R2

∣∣∣∣y = x+ 1

}

is not a subspace of R2

Solution. Just note thatw =

[
0

1

]
∈W but 2w =

[
0

2

]
̸∈W . ■

Exercise 1.12. IfW is a subspace of V , then 0 ∈W , and for anyw ∈W , −w ∈W .

Solution. We have 0 ·w = 0 ∈W and (−1) ·w = −w ∈W . ■

Corollary 1.13. IfW ⊆ V does not contain 0,W cannot be a subspace of V .

Exercise 1.14. If U,W are subspaces of V , then

(a) U ∩W is a subspace,

(b) U ∪W may not be a subspace, and

(c) U +W = {u+ w | u ∈ U,w ∈W} is a subspace.

Solution. (a) Let v1,v2 ∈ U ∩W and α be a scalar. Since U andW are subspaces, v1+ v2
and αv1 are members of both U andW , and thus are both in U ∩W .

(b) Choose V = R2, U =

{[
x

0

]
∈ R2

}
,W =

{[
0

y

]
∈ R2

}
(which are clearly subspaces),

then v1 =
[
1

0

]
,v2 =

[
0

1

]
∈ U ∪W but v1 + v2 =

[
1

1

]
̸∈ U ∪W .

(c) Let v1,v2 ∈ U + W . Write vi = ui + wi with ui ∈ U and wi ∈ W . Now we can
check that v1 + v2 = (u1 + u2) + (w1 + w2) ∈ U + W and that for any scalar α,
αv1 = αu1 + αw1 ∈ U +W . ■

We start with examples of how to write proofs for the previous exercise. The main idea
is to just don’t forget details (in particular, be more detailed than my proofs above).

Exercise 1.15. Let V = R2.

(a) Find a subsetX ⊆ V that is closed under addition but not scalar multiplication

(b) Find a subset Y ⊆ V that is closed under scalar multiplication but not addition

Solution. (a) Z2,Z,Q,Q[
√
5], . . .

(b) Union of the axes:
{[

x

y

] ∣∣∣∣xy = 0

}
■
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1.3 Bases and dimensions
Definition 1.16.
Let V be a vector space andB = (v1,v2, . . . ,vn) a system of vectors that is linearly indepen-
dent and spans V then B is called a basis of V .

Observation 1.17. We will see that every basis of a vector space has the same number of
elements. This number is called the dimension of V , denoted by dimV . Note that this is
not a trivial fact; proof will come later.

Example 1.18. Standard basis of Rn: (e1,e2, . . . ,en)

ei =



0
...
0

1

0
...
0


where 1 is in the i-th position.

Exercise 1.19. Show that
([

1

1

]
,

[
1

−1

])
is a basis of R2.

Solution. See Exercise 2.1 (c) for linear independence and note that for any v =

[
a

b

]
∈ R2,

[
a

b

]
=
a+ b

2

[
1

1

]
+
a− b

2

[
1

−1

]
. ■

We start with a discussion of Exercise 4.1. A more general example for 4.1(a) is lattices:
sets of the form L = {mv+ nw | m,n ∈ Z}. Now we will tackle a famous result/foundation
of Linear Algebra. *drumroll*

Theorem 1.20 (Exchange theorem). Let (v1, . . . ,vk) be linearly independent in vector
space V , and let (w1,w2, . . . ,wℓ) span V . Then k ⩽ ℓ.

This has a very important corollary:

Corollary 1.21 (Dimension). LetB1 andB2 be bases of V then |B1| = |B2|, and this value
is called the dimension of V .

Proof. Use the Exchange theorem twice to get |B1| ⩽ |B2| and |B2| ⩽ |B1|. □

Now let’s prove the Exchange theorem.

Proof (of Theorem 5.1). Start with the spanning system (w1,w2, . . . ,wℓ). We can then re-
peatedly exchange a vi with awj as follows:

(i) add a new vi in, making the system linearly dependent

(ii) write one of the terms as a linear combination of others, and we can force this to be a
wj because vi’s are linearly independent.
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(iii) remove thatwj, and still have the system be spanning.

If k > ℓ we can continue this until all wj’s are replaced by vi’s, and still add another vi in,
making vi’s linearly dependent which is the desired contradiction. ■

Exercise 1.22. Show that


xy
z

 ∈ R3

∣∣∣∣∣x+ y − z = 0

 is a subspace of R3 and find a basis

and its dimension.

Solution. Choosing


10
1

 ,
01
1


 works because if x+ y − z = 0 then

xy
z

 = x

10
1

+ y

01
1

 , and if α
10
1

+ β

01
1

 = 0

then α = β = 0. (Note that subspace-ness is implicitly shown since the set is a span of two
vectors.) Therefore the dimension is 2. ■

Exercise 1.23. LetP2(R)be the set of polynomials of degree⩽ 2. Find abasis anddim(P2(R)).

Solution. Choose (1, x, x2). This spans P2(R) because ax2+bx+c is equal to itself. It is also
linearly independent because if 0 = ax2 + bx+ c (as a polynomial) but a, b, c are not all then
we have a contradiction with the Fundamental Theorem of Algebra. Hence the dimension
is 3. ■

A very important note: in the proof above we are treating polynomials as functions on
R. If we treat them as formal objects where P = Q means every coefficient of P is equal
to every coefficient of Q instead, we can just compare coefficients to get a = b = c = 0.
However, in this class we will stick with the function point of view because we will consider
more functions such as trigonometric and exponential later.

Theorem 1.24. Let V be a vector space.

(a) If (v1, . . . ,vk) is linearly independent, then it canbe extended to abasis (v1, . . . ,vk,w1, . . . ,wℓ)

for somew1, . . . ,wk ∈ V .

(b) If (v1, . . . ,vk) spans V , then it contains a basis of V .

We will again follow the format of theorem statement→ corollary statement→ proof of
corollary→ proof of theorem.

Corollary 1.25. Every vector space has a basis

Proof. Let 0 ̸= v ∈ V . By (a) we can extend v to a basis of V . □

Proof (of Theorem 6.1). (a) If S = (v1, . . . ,vk) is a basis, we are done. If not, choose
w ̸∈ span S and putw in S. Rinse and repeat until done.
Note: this is a bit iffy when it comes to infinite-dimensional stuff–that’s probably be-
cause it can involve the Axiom of Choice. (in fact a lookup on Wikipedia suggest that
this is equivalent to the Axiom of Choice.) However, in this course we will focus on
finite-dimensional vector spaces, so we will just let this slide...
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(b) If S = span(v1, . . . ,vk) is not linearly independent, just remove one vj that is in the
span of others, and repeat until we get a linearly independent set. ■

Definition 1.26.
Let V be a vector space with basisB = (b1, . . . ,bn). Let x = [xi] ∈ Rn. DefineΦB : Rn → V

by ΦB(x) =
∑
xibi, and this is called the concrete-to-abstract map.

Theorem 1.27. ΦB is invertible (one-to-one and onto) and Φ−1
B is called the coordinate

map of V w.r.t. B.

Since people were confused about being why invertible is equivalent to being one-to-one
and being onto, here is an aside theorem.

Theorem 1.28. A function f : X → Y is invertible iff f is bijective. Moreover, the inverse
if unique and denoted by f−1.

Proof. (⇒) f(x) = f(y) implies x = f(g(x)) = f(g(y)) = y and x = f(g(x)) so f is both one-
to-one and onto. (⇐) Since f is bijective, for each x ∈ X there is a unique yx ∈ Y such that
f(yx) = x. Define g(x) := yx. (uniqueness) If g1, g2 are inverses of f then g1 = g1◦f ◦g2 = g2
for all y ∈ Y . ■

Let’s go back to what we wanted to prove.

Proof (of Theorem 6.4). Just use the span-ness and linear independence of B: if ΦB(x) =
ΦB(y) then

∑
(xi − yi)bi = 0 so x = y, and if v ∈ V then there is a unique (αi) such that

v =
∑
αibi so ΦB(α) = v. ■

This explains the term coordinate map for Φ−1
B : for given v, it gives a representation of

v ∈ Rn by giving the scalars that compose it.

Example 1.29. Let V = P2(R) and B = (1, x, x2). Then, ΦB


ab
c


 = a + bx + cx2 and

Φ−1
B (1 + 2x+ 3x2) =

12
3

 .
Exercise 1.30. Determine whether S = {v ∈ R3 | v1v2v3 = 0} is a subspace of R3

Answer: No.

Solution. It suffices to note that e1 =

10
0

 ,e2 =

01
0

 ,e3 =

00
1

 are in S but e1+e2+e3 =

11
1

 is not in S. ■
Exercise 1.31. Suppose the U is a subspace of V . What is U + U?

Answer: U + U is always U .

Solution. Any v ∈ U + U can be written as v = u1 + u2 where u1,u2 ∈ U . Since U is a
subspace, it is closed under addition, so v ∈ U , whichmeansU+U ⊆ U . On the other hand,
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since U is a subspace, it contains 0, so any u ∈ U can be written as u+ 0 ∈ U + U as well.
Therefore U ⊆ U + U , and thus U + U = U . ■

Exercise 1.32. Prove or give a counterexample: if U1, U2,W are subspaces of V such that
U1 +W = U2 +W , then U1 = U2.

Solution. A counterexample for any nontrivial V is U1 = {0}, U2 = W = V . Clearly,
U1 +W = V = U2 +W (the second equality follows from the last exercise) but U1 ̸= U2. ■

1.4 dimU +W

Exercise 1.33. Suppose U andW are subspaces of R8 such that dimU = 3,dimW = 5,
and U +W = R8. Prove that U ∩W = {0}.

Solution. Suppose that U ∩W is not {0}, so d := dimU ∩W ⩾ 1. Let B = (b1, . . . ,bd) be
a basis of U ∩W . We can extend B to a basis BU = (b1, . . . ,bd,u1, . . . ,u3−d) of U and a
basis BW = (b1, . . . ,bd,w1, . . . ,w5−d). Now we claim

S = (b1, . . . ,bd,u1, . . . ,u3−d,w1, . . . ,w5−d)

spans U +W = R8. This is not hard: for each v ∈ U +W , just write

v = u+w =
(∑

αibi +
∑

α′
iui
)
+
(∑

βibi +
∑

α′
iwi

)
=
∑

(αi+βi)bi+
∑

α′
iui+

∑
β′
iwi.

Now since the standard basis of R8 has 8 elements and is linearly independent, by the Ex-
change theorem, we have |S| ⩾ 8. However,

|S| = d+ (3− d) + (5− d) = 8− d

which is a contradiction. ■

Exercise 1.34 (Homework). Suppose that U andW are both five-dimensional subspaces
of R9. Prove that U ∩W ̸= {0}

Solution. Pick bases (u1, . . . ,u5) ofU and (w1, . . . ,w5) ofW . Since (u1, . . . ,u5,w1, . . . ,w5)

has 10 > 9 vectors, it must be linearly dependent in R9–say
∑
αiui +

∑
βiwi = 0. This

implies 0 ̸=
∑
αiui ∈ U ∩W . ■

[This is not in class, but I just want to note] In 6.10 we can actually show that S is linearly
independent as well: suppose that∑

γibi +
∑

αiui +
∑

βiwi = 0

with the coefficients being not all zero. This implies
∑
βiwi ∈ U ∩W . Hence,

∑
βiwi +∑

γ′ibi = 0 for some choice of γ′i’s, so by linear independence of BW we have βi ≡ 0.
Therefore we have ∑

αiui +
∑

βiwi = 0

with the coefficients being not all zero, contradicting the fact that BU is a basis of U . From
this we can derive the following theorem:

Theorem 1.35. If U andW are subspaces of a vector space V then

dim(U +W ) = dimU + dimW − dim(U ∩W ).
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This gives an easy solution to Exercises 6.10 and 11:

Solution (to Exercise 6.10). Since dim(U +W ) = 8, we have dim(U ∩W ) = 3 + 5 − 8 = 0

so U ∩W = {0}.

Solution (to Exercise 6.11). Since U +W ⊆ R9, dimU +W ⩽ 9. Therefore, dim(U ∩W ) ⩾
5 + 5− 9 = 1, so U ∩W is not {0}. ■

[In-class stuff follow:] In class we discussed solutions to Exercises 6.10 and 6.11, and
discussed some questions people have.

Exercise 1.36. Let V be a vector space, and U,W subspaces with bases BU and BW re-
spectively. Then, U +W = span(BU ∪BW ).

Solution. For each x ∈ V , we have x ∈ U +W iff there exists ux ∈ U andwx ∈W with x =

ux +wx iff there exists αi, βi with x =
∑

u∈BU
αiu+

∑
w∈BW

βiw iff x ∈ span(BU ∪BW ).
■

Exercise 1.37. If a function f : X → Y is invertible the the inverse is unique

See proof in last part of Theorem 6.5. Also, for good problems, check out Linear Algebra
Done Right by Sheldon Axler.

2 Linear transformations

2.1 Kernels and images
Definition 2.1.
Let T : V →W be a transformation between vector spaces. Then t is called linear or vector
space homomorphism if is commutative with linear combinations, that is, for all x,y ∈ V ,
α, β ∈ R,

T (αx+ βy) = αT (x) + βT (y).

Example 2.2. The map T : R2 → R2 defined by

T

[
x

y

]
=

[
3x+ 4y

x− y

]

is a linear transformation because if v =

[
x1
y1

]
,w =

[
x2
y2

]
, α, β ∈ R then

T (αv+ βw) = T

([
αx1 + βx2
αy1 + βy2

])

=

[
3(αx1 + βx2) + 4(αy1 + βy2)

αx1 + βx2 − αy1 − αy2

]

= α

[
3x1 + 4y1
x1 − y1

]
+ β

[
3x2 + 4y2
x2 − y2

]
= αT (v) + βT (w).

Example 2.3. Let a ∈ Rn and let Ta(x) = aTx. Then Ta : Rn → R is a linear transforma-
tion. This can be shown using commutative / distributive properties.
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Definition 2.4.
Let L(V,W ) be the set of linear transformations between V andW .

Note [not covered in class]: If I recall correctly,L(V,W ) is itself a vector space, andwhen
W = R, it is the dual space V ∨ of V .

Exercise 2.5. Show that if T ∈ L(V,W ) then T (0V ) = 0W .

Solution. T (0V ) = T (00V + 00V ) = 0T (0V ) + 0T (0V ) = 0W + 0W = 0W . ■

Example 2.6. The function f : R → R defined by f(x) = 3x + 1 is not a linear transfor-
mation because f(0) ̸= 0. It is called affine linear which means linear added by a constant.

Definition 2.7.
Let T ∈ L(V,W ). Then, the kernel of T is defined by

kerT = {v ∈ V |T (v) = 0}.

The image of T is defined as

imT = T (V ) = {T (v)|v ∈ V )}.

The graph representation of T (not used) is

ΓT = {(v, T (v))|v ∈ V }.

Theorem 2.8. (a) kerT is a subspace of V

(b) imT is a subspace ofW .

Proof. (a) If v,w ∈ kerT and α ∈ R then T (v+w) = T (v)+T (w) = 0 and T (αv+00) =
αT (v) + 0T (0) = 0.

(b) Pretty much the same thing. ■

Exercise 2.9. T : R3 → R is defined by T


xy
z


 = 3x+ 2y − z. Find a basis of kerT .

Solution. Let bx =

10
3

 and by =
01
2

. Then, (bx,by) is a basis of kerT because

if T


xy
z


 = 0 then

xy
z

 = xbx + yby,

and if xbx + yby = 0 then comparing coefficients give x = y = 0. ■

2.2 Matrices
Notation 2.10.
The set of allm× nmatrices with real entries is denoted by Rm

n . If A ∈ Rm
n then individual

elements of A are denoted by A = (aij)
m,n
i=1,j=1.

11



Matrix operations (here A,B ∈ Rm
n .)

• Addition: A+B = [aij + bij ]
m,n
i=1,j=1.

• Transposing: AT = [aji]
n,m
j=1,i=1.

• Scalar multiplication: for α ∈ R, αA = [αaij ]
m,n
i=1,j=1.

Observation 2.11. Rm
n is a vector of dimensionmn because of the standard basis

Eij = (ekℓ)
m,n
k=1,ℓ=1 where ekℓ =

{
1 if k = i, ℓ = j

0 otherwise.

• Matrix multiplication: For A ∈ Rm
n , B ∈ Rn

p ,

AB =

[
n∑

k=1

aikbkp

]m,p

i=1,j=1

.

This can be described as multiplying each row with each column.

Notation 2.12. • Matrices in column notation:

A =
[
a1 a2 · · · an

]
.

• Matrices in row notation:

A =


a1T
a2T
...

amT

 .
Using this notation we can also write matrix multiplication as

AB =


a1T
a2T
...

amT


[
b1 b2 · · · bp

]
= (aiT · bj)ij .

Amatrix I ∈ Rm
n is called an identity matrix if for allA ∈ Rm

n ,AI = IA = A. This works
only ifm = n.

Convince yourself that

I =


1 0 · · · 0

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 =
[
e1 e2 · · · en

]
= [aij ]ij where aij =

{
1 if i = j

0 otherwise.

For A ∈ Rn
n, B ∈ Rn

n is called an inverse of A if AB = BA = I. It can again be shown
that B is unique, justifying the notation A−1 = B.

Example 2.13 (Inverse of 2 × 2 matrices). The inverse of a matrix A =

[
a b

c d

]
where

ad− bc ̸= 0 is

A−1 =
1

ad− bc

[
d −b
−c a

]
.

12



Definition 2.14.
A matrix A ∈ Rn

n is called

• symmetric if A = AT ,
• antisymmetric if A = −AT , and
• diagonal if aij = 0 for all i ̸= j.

Exercise 2.15. Show that (AB)T = BTAT .

Solution. Using column and row notation and the fact that (MT )T =M for any matrixM ,

(AB)T = [aiT · bj]Tij = [aiT · bj]Tji = [bjT · ai]ji = BTAT . ■

Exercise 2.16. For any matrix A, ATA is symmetric.

Solution. Let A ∈ Rm
n , so AT ∈ Rn

m, so ATA is defined. Now,

(ATA)T = AT (AT )T = ATA

so ATA is symmetric. ■

Theorem 2.17. Let A ∈ Rm
n . Then A induces a transformation

TA : Rn → Rm

by TA(v) = Av and TA ∈ L(Rm,Rn).

Proof. Let α, β ∈ R and v,w ∈ Rn. We have

TA(αv+ βw) = A(αv+ βw) = A(αv) +A(βw) = α(Av) + β(Aw) = αTA(v) + βTA(w)

so TA is a linear transformation. ■

2.3 Matrices of transformations
Theorem 2.18. For each transformation T ∈ L(Rm,Rn), there exists a matrix [T ] ∈ Rm

n

such that
[T ]v = T (v)

for all v ∈ Rm. [T ] is called thematrix of T w.r.t. the standard basis.

Proof. We claim that
[T ] =

[
T (e1) T (e2) · · · T (en)

]
works. Let v ∈ Rm. There is a unique way of writing v as v =

∑n
i=1 αiei. Then,

T (v) =
n∑

i=1

αiT (ei) = [T ]v. ■

Exercise 2.19 (1.3.4 in book). (a) Let T be a linear transformation such that T

v1v2
v3

 =

2v1v2
v3

 .What is its matrix?

13



(b) Repeat part (a) for T

v1v2
v3

 =

 v2
v1 + 2v2
v3 + v1

 .
Answer: Just use theorem 10.3.

(a) [T ] =

2 0 0

0 1 0

0 0 1

. (b) [T ] =

0 1 0

1 2 0

1 0 1

.
Exercise 2.20. The rotation of R2 about the origin by angle θ is a linear transformation
ρθ : R2 → R2. Find [ρθ].

Solution. ρθ

[
1

0

]
=

[
cos θ
sin θ

]
and ρθ

[
0

1

]
=

[
− sin θ
cos θ

]
, so [ρθ] =

[
cos θ − sin θ
sin θ cos θ

]
. ■

Exercise 2.21. Let R : R2 → R2 be the reflection over the line y = x. Find [R].

Solution. R
[
1

0

]
=

[
0

1

]
and R

[
0

1

]
=

[
1

0

]
, so [R] =

[
0 1

1 0

]
. ■

Exercise 2.22 (1.3.10 in book). Is there a linear transformation T : R3 → R3 such that

T

10
0

 =

30
1

 , T
11
0

 =

42
4

 , T
11
1

 =

23
3

?
If so, what is its matrix?

Solution. We claim that the linear transformation defined by the matrix

[T ] =

3 1 −2

0 2 1

1 3 −1


works. This is easy to verify and easy to write by hand, but hard to typeset so I’ll skip that.
■

Note: Since the three vectors given as arguments of T are linearly independent, we know
that the answer is yes (without the need to show a [T ].) To find a specific T , we need to solve
for T (ei).

Theorem 2.23. Let T ∈ L(V,W ). Then T is defined uniquely by its values on a basis.

Proof. Let B = (b1,b2, . . . ,bn) be a basis and v ∈ V. There is a unique way to write v =∑
αibi. Then,

T (v) = T
(∑

αibi
)
=
∑

αiT (bi). ■

Corollary 2.24. Let T : V → W and B a basis of V . Then there exists exactly one S ∈
L(V,W ) such that S|B = T |B (that is, S assumes the same values as T on the basis.)

Definition 2.25.
If B = (b1,b2, . . . ,bn) is a basis of Rn and T ∈ L(Rn), then

[T ]B =
[
T (b1) T (b2) · · · T (bn)

]
14



is thematrix of T with respect to B. It has the property that

T (v)B = [T ]B [v]B .

Example 2.26. From the previous exercise the matrix X =

3 4 2

0 2 3

1 4 3

 sends an input
w.r.t. B to an output w.r.t. standard matrix. This is not [T ]B . To get [T ]B , we need to write

the columns in terms of B as well. Anyway, we have v =

01
0

 =

−1

1

0


B

soX[v]B =

12
3


2.4 Isomorphisms
Definition 2.27.
Let T ∈ L(V,W ). Then T is called an isomorphism if T is a bijection. V is isomorphic to
W , denoted V ∼=W if there exists an isomorphism between them.

Loosely speaking, isomorphic vector spaces are algebraically indistinguishable: they
only differ by what their vectors represent.

Example 2.28. As vector spaces, C ∼= R2 with the isomorphism a + bi 7→ (a, b). More
rigorously:

(i) define: Let φ : C → R2 be defined by φ(z) =
[
x

y

]
if z = x+ iy.

(ii) linear: Then, if z = x+ iy, w = u+ iv ∈ C, α, β ∈ R, then φ(αz + βw) = φ(αx+ βu+

i(αy + βv)) =

[
αx+ βu

αy + βv

]
= αφ(z) + βφ(w).

(iii) 1-1: If φ(z) = φ(w) then ℜ(z) = ℜ(w) and ℑ(z) = ℑ(w), so z = w.

(iv) onto: For any v =

[
x

y

]
∈ R2 we have φ(x+ iy) = v.

Exercise 2.29. T ∈ L(V,W ) is 1-1 iff kerT = {0}.

Solution. (⇒) If T is 1-1 then for any v ∈ kerT , T (0) = T (v) so 0 = v, so kerT = {0}.
(⇐) If kerT = {0} then for any v1,v2 with T (v1) = T (v2), T (v1 − v2) = 0. Therefore
v1 − v2 ∈ kerT so it is 0, hence v1 = v2. ■

2.5 Dimension formula
Theorem 2.30 (Dimension formula). Let T ∈ L(V,W ). Then,

dimV = dimkerT + dim imT.

Proof. LetB1 = (u1, · · · ,uk)be a basis of kerT . ExtendB1 to a basisB = (u1, · · ·u1,w1, · · · ,wℓ

of V . Then, dimV = dimkerT + ℓ so we need to show
We claim that B2 = (T (w1), · · · , T (wℓ)) is a basis of imT . If

∑
αiT (wi) = 0 then

T (
∑
αiwi) = 0, so

∑
αiwi ∈ kerT . Therefore we can write∑

αiwi −
∑

βjuj = 0

15



for some βj ’s. Since B is a basis, it follows that αi = βj = 0 for all i, j, so B2 is a linearly
independent system.

Now for any y ∈ imT , there exists a x ∈ V with T (x) = y. Now we write x =
∑
αiwi +∑

βjuj to get T
(∑

αiwi +
∑
βjuj

)
= y. This is∑

αiT (wi) +
∑

βjT (uj) = y,

but sinceuj ∈ kerT , the second sumvanish soy ∈ spanB2, so imT ⊆ spanB2. On the other
hand, it is clear that spanB2 ⊂ imT because we can take linear combinations of images of
T in B2 so spanB2 = imT .

Combining all of the above, B2 is a basis of imT , so dim imT = ℓ. ■

There are also special terms for dimkerT and dim imT : nullity and rank of T , respec-
tively.

Exercise 2.31. If T ∈ L(V ) then T is 1-1 iff T is onto.

Solution. (⇒) If T is 1-1 then kerT = {0}, so dimkerT = 0. By the Dimension formula,
dim imT = dimV . Now we claim imT = V . Suppose not, then there is an element v ∈
V − imT . We can add this to a basis (b1, · · · bn) of imT , getting a linearly independent set
of dimV + 1 vectors in V , which is impossible. Therefore, imT = V , so T is onto.

(⇐) If T is onto then imT = V , so dim imT = dimV . By the Dimension Formula,
dimkerT = 0 so kerT = {0}, hence T is 1-1. ■

Exercise 2.32. Give an example of a function f : R2 → R such that

f(av) = af(v)

for all a ∈ R and v ∈ R2 but f is not linear.

Solution. We claim that the function f defined as follows works:

f

([
x

y

])
=

{
0 if y ̸= 0

x if y = 0

For any α ∈ R and v =

[
x

y

]
∈ R2, if y = 0 then av =

[
ax

0

]
so f(av) = ax = af(v). If

y ̸= 0 then f(av) = 0 = af(v), so f preserves scalar multiplication.

However, we have f
([

1

1

])
= 0 ̸= 1 = f

([
1

0

])
+ f

([
0

1

])
, so f is not linear. ■

Exercise 2.33. Suppose that V is finite dimensional. Prove that any linear map on a sub-
space of V can be extended to a linearmap on V . In other words, show that ifU is a subspace
of V and S ∈ L(U,W ), then there exists T ∈ L(V,W ) such that T (u) = S(u) for all u ∈ U .

Solution. Extend a basis (b1, . . . ,bn) of U to a basis (b1, . . . ,bn,v1, · · · ,vk) of V . Define T
by T (bi) = S(bi), and T (vi) = 0. Then, for any u ∈ U , write u =

∑
αibi, so

T (u) =
∑

αiT (bi) =
∑

αiS(bi) = S(u). ■
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2.6 Test review
Syllabus for test on linear maps (Thursday Oct 4)

• Definitions:
– Linear transformations
– kernel and image
– dimension formula
– matrix of a linear transforma-
tion

– (1-1, onto)
• Computations:

– kernel, image, and bases there-
for

– matrix of a linear transforma-
tion

• Proofs:

– Show that a map is linear, 1-1,
onto

Some review:

Exercise 2.34. Prove that if T is a linear map from F4 to F2 such that

kerT = {(x1, x2, x3, x4) ∈ F4|x1 = 5x2 and x3 = 7x4}

then T is surjective.

Solution. Note that ((5, 1, 0, 0), (0, 0, 7, 1)) is a basis of kerT , so dimkerT = 2. By the Di-
mension formula, dim imT = 2 = dimF 2. Since imT is a subspace of F2, it follows that
imT = F2, so T is surjective. ■

Exercise 2.35 (2.3 in book ch.2 review). a. Let T : Rn → Rm be a linear transforma-
tion. Are the following statements true or false?

1. If kerT = {0} and T (y) = b, then y is the only solution to T (x) = b.
2. If y is the only solution to T (x) = c, then for any b ∈ Rm, a solution exists to

T (x) = b.
3. If y ∈ Rn is a solution to T (x) = b, it is the only solution.
4. If for anyb ∈ Rm the equationT (x) = bhas a solution, then it is the only solution.

b. For any statements that are false, can one impose conditions on m and n that make
them true?

Solution. a. 1. True. If T (y′) = b then T (y′ − y) = 0 so y′ − y = 0 so y′ = y.
2. False. Ifm > n then dim imT ⩽ n < m so imT ̸= Rm.
3. False. For example take the zero map T (x) ≡ 0 which is clearly not injective.
4. False in both interpretations.

b. 2. The statement is true for (m,n) iffm ⩽ n (vacuously so ifm < n). The equation
T (x) = c has a unique solution iff kerT = {0} iff dim imT = n.

3. No; the zero map is a counterexample for all (m,n).
4. Depends on the interpretation; the statement “If (for any b ∈ Rm the equation

T (x) = b has a solution), then it is the only solution.” is true for (m,n) iffm = n.
The statement “For any b ∈ Rm, if the equation T (x) = b has a solution, then it
is the only solution.” is false for all (m,n). ■
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Exercise 2.36. Prove that if there exists a linear map on V whose kernel and image are
both finite dimensional, then V is finite dimensional.

Solution. Dimension formula, duh. ■

Exercise 2.37. Suppose that V andW are both finite dimensional. Prove that there exists
a surjective linear map from V ontoW if and only if dimW ⩽ dimV .

Solution. If there exists a surjective linear map T from V ontoW then

dimV = dimkerT + dim imT = dimkerT + dimW ⩾ dimV.

On the other hand, if dimV ⩾ dimW , let BV = {v1, . . . ,vdimV } be the basis of V , BW =

{w1, . . . ,wdimW } be the basis of W . Then, the transformation T ∈ L(V,W ) defined by
T (vi) = wi for i = 1, . . . ,dimW and T (vj) = 0 for j > dimW is onto. ■

Exercise 2.38. Suppose that V and W are finite dimensional and that U is a subspace
of V . Prove that there exists T ∈ L(V,W ) such that kerT = U if and only if dimU ⩾
dimV − dimW .

Solution. If there exists such a T then, since imT ⊆W , by the dimension formula,

dimU = dimkerT = dimV − dim imT ⩾ dimV − dimW.

On the other hand, if dimU > dimV − dimW , let BU be a basis of U , and BV be a basis
of V that is an extension of BU . Also let BW be a basis of W . The following T works: for
all u ∈ BU , let T (u) = 0, and for each v ∈ BV \ BU , let T (v) be different members of BW .
(This is possible as dimW ⩾ dimV − dimU .) ■

Exercise 2.39. Suppose that U and V are finite-dimensional vector spaces and that S ∈
L(V,W ), T ∈ L(U, V ). Prove that

dimkerST ⩽ dimkerS + dimkerT.

Solution. I’m opting for a more rigorous solution than the one we got in class. Let BT be a
basis of kerT . Since kerS and imT are both subspaces of V , V ′ = kerS∩ imT is a subspace
of V as well. Choose a basis BV ′ = {v1,v2, . . . ,vℓ} of V ′, and pick b1, . . . ,bℓ ∈ U such that
Tbi = vi for i = 1, . . . , ℓ.

Now, suppose that u ∈ U makes STu = 0. Then, Tu ∈ V ′, so we can write Tu =∑ℓ
i=1 αivi. Now note that for u′ =

∑ℓ
i=1 αibi, Tu′ = Tu so u′ − u ∈ kerT so

u ∈ span (BT ∪ {b1, . . . ,bℓ})

Hence, kerST ⊆ span (BT ∪ {b1, . . . ,bℓ}) so

dimkerST ⩽ dimkerT + dim(kerS ∩ imT ) ⩽ dimkerT + dimkerS. ■

Exercise 2.40. Suppose that V is finite dimensional and S, T ∈ L(V ). Prove that ST is
invertible if and only if both S and T are invertible.

Solution. First, note that for any R ∈ L(V ), by the Dimension Formula, kerR = {0} iff
imR = V , so both of these are equivalent to R being invertible.

(⇒) If ST is invertible then imST = V and kerST = {0}. Since imST ⊆ imS, imS =

V so S is invertible. Since kerT ⊆ kerST , kerT = {0} so T is invertible.
(⇐) If bothS andT are invertible then considerT−1S−1. Since (T−1S−1)(ST ) = (ST )(T−1S−1),

ST is invertible with T−1S−1 as its inverse. ■
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Exercise 2.41. Suppose that V is finite dimensional and S, T ∈ L(V ). Prove that ST = I

if and only if TS = I.

Solution. Since ST = I is invertible, T is invertible. Then, TS = TSTT−1 = TT−1 = I.

Exercise 2.42. Suppose that T is a linear map from V to R. Prove that if u ∈ V is not in
kerT then

V = kerT ⊕ {au|a ∈ R}

Notation: V = U ⊕W iff V = U +W and U ∩W = {0}

Solution. Let n = dimV . Since imT ⊆ R, dim imT ⩽ 1. Since u ̸∈ kerT , kerT ̸= V so
dimkerT ⩽ n− 1. However, by the Dimension Formula,

n = dimV = dimkerT + dim imT ⩽ (n− 1) + 1 = n

so dimkerT = n − 1 and dim imT = 1. Since u ̸∈ kerT , neither is au for any a ̸= 0 ∈ R,
so kerT ∩ {au|a ∈ R} = {0}. Let B be a basis of kerT . Then, B ∪ {u} is a basis of
kerT + {au|a ∈ R} so dimkerT + {au|a ∈ R} = n = dimV so kerT + {au|a ∈ R} = V . ■
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3 Geometry in Rn

3.1 The dot product
We introduce measures for lengths and angles in Rn. In particular, we are interested in
defining orthogonality (right angles).

Definition 3.1.

Let v =


x1
...
xn

 andw =


y1
...
yn

. Then, the dot product v ·w is defined as

v ·w =

n∑
i=1

xiyi.

The dot product can easily be seen to be commutative and distributive.

Definition 3.2.
The norm, which is a measure of length, is defined as ∥v∥ =

√
v · v. The alternate notation

|v| can be used as well, but this notation is normally reserved for R and C.

Definition 3.3.
The distance between two vectors v,w is the norm of their difference: d(v,w) = ∥v−w∥.

Definition 3.4.
The angle between two vectors v,w ∠(v,w) is defined by

cos∠(v,w) =
v ·w

∥v∥∥w∥
.

Now note that this definition would only work if v·w
∥v∥∥w∥ ∈ [−1, 1], and this is indeed the

case–we will prove it later.
First let’s try see it makes sense in R2. Suppose we have two vectors v,w making an

angle θ. By the cosine law, we have

∥w− v∥2 = ∥w∥2 + ∥v∥2 − 2∥v∥∥w∥ cos θ.

which expands to
2v ·w = 2∥v∥∥w∥ cos θ

as we wanted.
Let’s prove that v·w

∥v∥∥w∥ . In fact this theorem has a familiar name:

Theorem 3.5 (Cauchy-Schwarz). For any vectors v,w ∈ Rn,

|v ·w| ⩽ ∥v∥∥w∥.

Equality holds iff one of v orw is a scalar multiple of the other.

Proof. If either v orw is0, the statement is obvious, so suppose both are nonzero. Consider
the function ∥v + tw∥2 as a function of t. It is a second-degree polynomial of the form
at2 + bt+ c:

∥tw+ v∥2 = ∥w∥2t2 + 2v ·wt+ ∥v∥.
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This polynomial evidently has at most one root, so its discriminant is ≤ 0, which means

4(v ·w)2 − 4∥v∥2∥w∥2 ⩽ 0

, which is what we want! To prove that equality holds only when one of v or w is a scalar
multiple of the other, note that the discriminant equality holds iff the quadratic polynomial
has exactly one root, which means ∥tw+ v∥ is zero for exactly one value of t, which means
tw+ v = 0. ■

3.2 Orthogonality and projections
Definition 3.6.
Two vectors v,w ∈ Rn are orthogonal, denoted by v ⊥ w, if v ·w = 0.

Definition 3.7.
A basis of Rn in which any two vectors are orthogonal is called an orthogonal basis. If, in
addition, each vector has norm equal to 1, the basis is said to be orthonormal.

Orthogonality and orthonormality is very useful because of the following:

Theorem3.8. Let v ∈ Rn and (b1,b2, · · · ,bn) be an o.n.b. (short for orthonormal basis).
Then,

v =

n∑
i=1

(v · bi)bi.

Proof. Let v =
∑
αibi for αi ∈ R. We have

v · bj =
n∑

i=1

αi(bi · bj) = αi

since bi · bj = 1 if i = j and 0 otherwise. ■

Definition 3.9.
Let P ∈ L(V ) with P 2 = P . Then, P is called a projection. If, furthermore, P (v) ⊥

(
P (v)−

v
)
, then P is called an orthogonal projection.

Example 3.10. Some familiar projections include projecting a force onto the direction of
displacement when calculating work in physics.

If a projection P ∈ L(V ) is 1-1 / onto (on V ) then from P (P (v)) = P (v) so P (v) = v so
P is the identity.

Exercise 3.11 (1.4.24 in book). Let v ∈ Rn be a nonzero vector, and denote by v⊥ ⊂ Rn

the set of vectorsw ∈ Rn such that v ·w = 0.

(a) Show that v⊥ is a subspace of Rn.
(b) Given any vector a ∈ Rn, show that a− a·v

∥v∥2v is an element of v⊥.
(c) Define the projection of a onto v⊥ by the formula

Pv⊥(a) = a− a · v
∥v∥2v.

Show that there is a unique number t(a) such that
(
a+ t(a)v

)
∈ v⊥. Show that

a+ t(a)v = Pv⊥(a).
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Solution. (a) i. For anyw1,w2 ∈ v⊥, we have v · (w1 +w2) = v ·w1 + v ·w2 = 0, so
w1 + w2 ∈ v⊥.

ii. For anyw ∈ v⊥ and α ∈ R, we have v · (αw) = α(v ·w) = 0 so αw ∈ v⊥.
Therefore v⊥ is a subspace of Rn.

(b) Since

v ·
(
a− a · v

∥v∥2v
)

= v · a−
(
a · v
∥v∥2

)
v · v = v · a−

(
a · v
∥v∥2

)
∥v∥2 = 0,

it follows that a− a·v
∥v∥2v is in v⊥.

(c) i. First, t(a) = − a·v
∥v∥2 works. Now suppose t1, t2 are numbers such that both a+ t1v

and a + t2v are in v⊥. Then, since v⊥ is a subspace, (a + t1v) − (a + t2v) =

(t1 − t2)v ∈ v⊥. This means 0 = v · (t1 − t2)v = (t1 − t2)∥v∥2, but v is nonzero, so
t1 = t2.

ii. Since Pv⊥(a) is in v⊥, and it can be written in the form a+ tv with t ∈ R, from i.
we have t = t(a). ■

How is the formula for Pv⊥(a) derived? Since we want an orthogonal projection onto
v⊥, we have a−Pv⊥(a) = tv for some t ∈ R. Now we want (a− tv) · v = 0, and solving this
yields t = a·v

∥v∥2 .

Exercise 3.12. Show that Pv⊥ is indeed a projection.

Solution. Let a ∈ V . Since Pv⊥(a) ∈ v⊥, v · Pv⊥(a) = 0, so

Pv⊥ (Pv⊥(a)) = Pv⊥(a)−
Pv⊥(a) · v

∥v∥2 v = Pv⊥(a). ■

Now let’s see how matrices of projections look like.

Example 3.13. Suppose we have v ∈ R3 with ∥v∥ = 1. The matrix of Pv⊥ is given by
[Pv⊥(ei)]

3
i=1.

Let’s say v =

v1v2
v3

. Then, Pv⊥(e1) = e1− (e1 ·v)v =

1− v21
−v1v2
−v1v3

 . This, and similar results
for e2 and e3, gives

[Pv⊥ ] =

1− v21 −v1v2 −v1v3
−v1v2 1− v22 −v2v3
−v1v3 −v2v3 1− v23

 = I3 − vvT .

Clearly this generalizes to Rn as well.

Exercise 3.14 (1.4.27 in Book). Let v =

ab
c

 be a unit vector in R3, so a2 + b2 + c2 = 1.

(a) Show that the transformation Ta defined by Ta(v) = v− 2(a · v)a is a linear transfor-
mation R3 → R3.

(b) What is Ta(a)? If v is orthogonal to a, what is Ta(v)? Can you give a name to Ta?

(c) Write the matrixM of Ta (in terms of a, b, c, of course). What can you say ofM2?
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3.3 Determinants
Definition 3.15.
Let a1, . . . ,an ∈ Rn. Then, the determinant det

[
a1 · · · an

]
is defined inductively as

follows:

• For n = 1, det[a] = a.

• For A = det
[
a1 · · · an

]
, define Ãij as the matrix obtained from A by deleting row

i and column j. Then

detA = a11 det Ã11 − a21 det Ã21 + · · ·+ (−1)n+1an1 det Ãn1

Example 3.16. det
[
a b

c d

]
= a · d− b · c.

Example 3.17. det

1 2 −1

0 3 −2

2 0 1

 = 1 · det
[
3 −2

0 1

]
− 0 · det

[
2 −1

0 1

]
+ 2 · det

[
2 −1

3 −2

]
=

1 · 3− 0 · 2 + 2 · (−1) = 1

Note: you can expand the determinant into any row or columnusing the above principle.
The signs are determined by the “checkerboard rule”:

+ − + · · ·
− + − · · ·
+ − + · · ·
...

...
...

. . .

 .
Example 3.18. From the last example, using the second column instead of the first also
gives 1. Verification left to the reader.

Some more properties of determinants, given without proof:

• Let P (v1, . . . ,vn) be the parallelogram in Rn spanned by the vectors v1, . . . ,vn. Then
the volume of P (v1, . . . ,vn) is equal to |det[v1, . . . ,vn]|

• det[v1, . . . ,vn] is a multilinear and antisymmetric map (Rn)n → R. In more under-
standable terms, it is linear in each of the arguments v1, . . . ,vn, and if you switch any
two arguments, the determinant will be multiplied by −1.

• It is invariant under transposition, that is, detA = detAT for any square matrix A.

• It is multiplicative, that is, detAB = detA · detB.

Preview: a multilinear, anti-symmetric map ϕ : (Rn)k → R is called a k-form on Rn.
Let us go back to the fact that the determinant ismultilinear and antisymmetric again.

What this means is that if any column vi is repeated in the determinant, the determinant
becomes zero as we can swap the vi’s.

Finally, as I feel that it is very useful, even though we didn’t cover it in class, it is worth
knowing the Leibniz form of the determinant:

detA =
∑
σ

sgn(σ)
n∏

i=1

ai,σ(i).
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3.4 Problems
Let’s go back to Exercise 1.4.27 in the book.

Solution (to 1.4.27). (a) Follows from the linearity of dot products.

(b) Ta(a) = −a; if v is orthogonal to a, Ta(v) = v; Ta is a reflection.

(c) M =

1− 2a2 −2ab −2ac

−2ab 1− 2b2 −2bc

−2ac −2bc 1− 2c2

;M2 = I; T 2 is the identity.

Exercise 3.19 (1.4.16a in Book). What is the area of the parallelogram with vertices at(
0
0

)
,
(
1
2

)
,
(
5
1

)
,
(
6
3

)
?

Answer:

∣∣∣∣∣det
[
1 5

2 1

]∣∣∣∣∣ = 9.

Exercise 3.20 (1.4.5 in Book). Calculate the angles between the following pairs of vectors:

a.

10
0

 ,
11
1

 b.


1

0

−1

0

 ,

1

1

1

1


Answer: a. arccos 1√

3
= 54.74◦

b. arccos 0 = 90◦

Exercise 3.21. Normalize the following vectors:

01
4

 ,[−3

7

]
,


√
2

−2

−5

 .

Answer:

 0
1√
17
4√
17

 ,[− 3√
58

7√
58

]
,


√
2√
31

− 2√
31

− 5√
31

 .
Since detA−1 = (detA)−1, matrices with determinant zero are non-invertible.

Exercise 3.22. Let v =

12
3

 and letw be a vector such that v·w = 42. What is the shortest

w can be? The longest it can be?

Answer: ∥w∥ can take any value in [3
√
14,∞).

Solution. Cauchy-Schwarz for the lower bound, attained atw =

36
9

. Takew =

2x−x
14

with
x→ +∞ to get ∥w∥ as large as you want.

Exercise 3.23. Let P be a projection, P ∈ L(V ). Show that

a) The identity map I is the only invertible projection.

b) Q = I − P is a projection

c) kerQ = imP and imQ = kerP .

24



Solution. a) Clearly, the identity map is a projection. If a projection P is invertible, then
for any v ∈ V , P (v) = P−1(P (P (v))) = P−1(P (v)) = v so P = I.

b) For any v ∈ V ,

Q(Q(v)) = I(I(v)− P (v))− P (I(v)− P (v)) = v− P (v)− P (v− P (v)).

Therefore, using linearity of P ,

Q(Q(v)) = v − P (v)−���P (v) +����P (P (v)) = v − P (v) = Q(v),

so Q is a projection.

c) Let P0 be a projection. If v ∈ imP0 then there is a v′ such that P0(v′) = v, so P0(v) =
P0(P0(v′)) = P0(v′) = v. On the other hand, if P0(v) = v then v ∈ imP0, so v ∈
imP0 ⇐⇒ P0(v) = v. Using the above, we have

v ∈ kerQ ⇐⇒ Q(v) = 0 ⇐⇒ P (v) = v ⇐⇒ v ∈ imP

and
v ∈ imQ ⇐⇒ Q(v) = v ⇐⇒ P (v) = 0 ⇐⇒ v ∈ kerP

so kerQ = imP and imQ = kerP . ■

Exercise 3.24 (2.15 in book ch.2 review).
Show that an orthogonal 2× 2matrix (this actually means orthonormal) is either a rotation
or a reflection.

Solution. There are two possible forms to an orthogonal 2× 2matrix:[
a b

b −a

]
,

[
a −b
b a

]

for a2 + b2 = 1. For the former form, since[
a b

b −a

]2
= I and

[
a b

b −a

][
x

y

]
=

[
ax+ by

bx− ay

]

with
√
(ax+ by)2 + (bx− ay)2 =

√
x2 + y2, the matrix describes an isometric involution,

which is a reflection. For the latter form, since a2 + b2 = 1, there exists θ such that a =

cos θ, b = sin θ, the matrix describes the rotation by θ. ■
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4 Linear regression project
For Hotchkiss class MA661 Linear Algebra. Using the guideline questions, we develop the
theory of linear regression and apply it to create a model predicting body height based on
hand span, foot length, and femur length.

4.1 Introduction
Suppose thatwewant tomodel a quantityY fromobservedquantitiesX1, X2, . . . , Xp. Clearly,
there are as many ways to do this as there are functions f : Rp → R. But what if we restrict
the function to be linear? Linear regression is exactly that.

Let’s saywe collectedN data sets (X1i, X2i, . . . , Xpi, Yi)
N
i=1 as trainingdata for ourmodel

to work on. We want to find coefficients β0, β1, . . . , βp such that

Yi ≈ ŷi = β0 +

p∑
j=i

βjXji (1)

for each i = 1, 2, . . . , N . Here ŷi is the our model’s predicted value. But what exactly does
the ≈ symbol mean here? How do we say one approximation (for all N data sets) is better
or worse than another? The answer is that we use the least squares method: we want the
sum of squares of errors

N∑
i=1

(Yi − ŷi)
2 (2)

to be minimized. Looking at what ŷi expands to, this would be pretty ugly, except that we
have linear algebra to the rescue!

Let y = (Yi)
N
i=1 and ŷ = (ŷi)

N
i=1 be vectors in RN ,X = (1,X1,X2, . . . ,Xp) anN × (p+1)

matrix (where 1 is the vector with all 1’s), and β = (β0, β1, . . . , βp)
T be a vector of unknown

coefficients in Rp+1. Using this notation, (1) can be written as

ŷ = Xβ

and the sum of squares in (2) becomes just

∥y− ŷ∥2 = ∥y−Xβ∥2 .

With this, we are ready to delve into the theory!

4.2 Theory Questions
1. Explain why the orthogonal projection of the training data y into the column space
ofX is a sensible choice for minimizing the total error ∥y− ŷ∥.

Geometrical intuition tells us that the distance from a point A to another point B on a
line/plane/n-dimensional space isminimizedwhenAB is perpendicular to the line/plane/space,
that is, when B is the projection of A onto the line/plane/space.

Since the column space ofX is, by definition, span (1,X1,X2, . . . ,Xp), which is precisely
all the values ŷ = Xβ can take. Since we want our choice of ŷ to be closest to y, intuitively,
we want ŷ to be the projection of y onto the column space ofX.
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2. Show that the rank ofX (or dim imX) is equal to the number of linearly independent
columns ofX.

Since for a vector v = (v0, v1, . . . , vp)
T ,Xv is simply

∑p
j=0 vjXj (takingX0 = 1), imX is

precisely the column space ofX. Suppose that the number of linearly independent columns
of X is m, that is, there is a set W of m columns of X that are linearly independent, but
not such a set ofm+ 1 columns. Therefore, any column Xk ̸∈ W can be written as a linear
combination of vectors inW :

Xk =
∑

Xj∈W

αkjXj.

(elseW ∪ {Xk} sould be a linearly independent set of m + 1 columns.) Using this we can
write each u =

∑p
j=0 γjXj ∈ span (X0,X1, . . . ,Xp) as

u =
∑

Xj∈W

γjXj +
∑

Xi ̸∈W

γi

 ∑
Xj∈W

αijXj

 ,

so W spans the column space of X. Therefore W is a basis of imX, which means that
dim imX = m.

3. Argue why it is reasonable to assume that realistic examples ofX have full rank (We
say thatX has full rank if all columns ofX are linearly independent)

IfX does not have full rank, there has to be a linear combination
p∑

j=0

αjXj = 0

with coefficients αj not all zero. This means that

p∑
j=0

αjXji = 0

perfectly for all i = 1, . . . , N . In realistic situations where we collect enough data (N is
big enough), there is likely to be at least some error/variance from measurement, so it is
unlikely that there would be a linear combination that is zero for all i = 1, . . . , N .

4. For the case p = 1, but generalN , showdirectly: IfX has full rank,XTX is invertible

LetX1 = (X11, X12, . . . , X1N )T . We have

XTX =

[
1 1 · · · 1

X11 X12 · · · X1N

]
1 X11

1 X12

...
...

1 X1N

 =

[
N

∑n
i=1X1i∑N

i=1X1i

∑N
i=1X

2
1i

]
.

Let S1 =
∑N

i=1X1i and S2 =
∑n

i=1X
2
1i. Since X has full rank, the X1i’s are not all equal

(else,X111−X1 = 0meansX does not have full rank.) Hence,

NS2 − S2
1 =

∑
1⩽i<j⩽N

(X1i −X1j)
2 ̸= 0.
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Therefore, by the formula for inverse of 2× 2matrices 1 ,XTX is invertible with inverse

1

NS2 − S2
1

[
S2 −S1

−S1 N

]
.

5. For general p, show: IfX has full rank,XTX is invertible.

Consider a vector v ∈ kerXTX, and letw = Xv. We have

∥w∥2 = wTw = vTXTXv = 0,

so w = 0, which means that v ∈ kerX as well. Therefore kerXTX ⊂ kerX. However,
X has full rank, therefore all columns of X are linearly independent, thus kerX = {0}.
Therefore, kerXTX = {0} as well.

Next we claim thatXTX has full rank. Let c0, . . . , cp be the columns ofXTX. Suppose
that there are real numbers α0, . . . , αp such that

p∑
j=0

αicj = 0.

Then, the vector α = (α0, · · · , αp)
T satisfy XTXα = 0, so α ∈ kerXTX ⇒ α = 0. There-

foreXTX has full rank.
Now consider the column space imXTX ofXTX. SinceXTX has full rank, all columns

of XTX are linearly independent, so dim imXTX = p + 1. Since XTX ⊂ Rp+1, it follows
that imXTX = Rp+1. Therefore, there are vectors u1,up+1 such that

XTXuj = ej

for each j = 1, 2, . . . , p+ 1. It then follows that the matrix

U =
[
u0 u1 · · · up+1

]
makes (XTX)U = I

Observe2 that

(XTX)U(XTX) = XTX implies (XTX)(UXTX − I) = 0.

Since XTX has full rank, UXTX − I must be the zero matrix, so UXTX = I as well, so
XTX is invertible (with inverse U).

6. Show: IfX has full rank, the solution ofXT (y−Xβ) = 0 is β̂ = (XTX)−1XTy.

Since XT (y − Xβ̂) = XT (y − X(XTX)−1XTy) = XTy −(((((((
XTX(XTX)−1XTy = 0,

β̂ = (XTX)−1XTy is a solution ofXT (y−Xβ) = 0.
If there are two solutions β = β1, β2 toXT (y−Xβ) = 0 then

XTX(β1 − β2) = XT (y−Xβ1)−XT (y−Xβ2) = 0.

Since kerXTX = {0}, it follows that β1 − β2 = 0, that is, β1 = β2. Therefore β̂ =

(XTX)−1XTy is the solution ofXT (y−Xβ) = 0.

1 Shown in class: the inverse of a matrix A =

[
a b

c d

]
where ad− bc ̸= 0 is A−1 =

1

ad− bc

[
d −b

−c a

]
.

2 Based on Davidac897’s answer in Math.SE at https://math.stackexchange.com/a/3860.
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7. Show that the best-fit model is ŷ = X(XTX)−1XTy, and that H := X(XTX)−1XT

is the matrix of an orthogonal projection.

From

0 = XT (y−Xβ̂) =


X0 · (y−Xβ̂)

X1 · (y−Xβ̂)
...

Xp · (y−Xβ̂)

 , (3)

for any j = 0, . . . , p we have Xj · (y −Xβ̂) = 0 so y −Xβ̂ is orthogonal to every column of
X.

SinceXv can be written as a linear combination of columns ofX,

(y−Xβ̂) ·Xv = 0

for all v ∈ Rp+1.

We are now ready to show that ŷ = X(XTX)−1XTy = Xβ̂ gives the best-fit model.
Suppose that we have a linear model described by a vector β′. Then,

∥y−Xβ′∥2 = ∥(y−Xβ̂) +
(
X(β̂ − β′)

)
∥2

=
(
(y−Xβ̂) +

(
X(β̂ − β′)

))
·
(
(y−Xβ̂) +

(
X(β̂ − β′)

))
= (y−Xβ̂) · (y−Xβ̂) + 2(y−Xβ̂) ·

(
X(β̂ − β′)

)
+
(
X(β̂ − β′)

)
·
(
X(β̂ − β′)

)
= ∥y−Xβ̂∥2 + 0 + ∥X(β̂ − β′)∥2

⩾ ∥y−Xβ̂∥2.

Therefore ŷ = Xβ̂ gives the best-fit model, and sinceX(β̂ − β′) ̸= 0 for any β′ ̸= β̂, it is the
unique best-fit model as well.

The last thing we need to show is that H is a matrix of an orthogonal projection. First,
since

H2 = X(XTX)−1
(((((((
XTX(XTX)−1XT = H,

H is a matrix of a projection. Now, using the same method as in question 6., for any vector
v ∈ RN ,

XT (Hv− v) = −XT (v−X(XTX)−1XTv) = 0.

Therefore, in the same way as (3),Hv− v is orthogonal to every column ofX. Since

Hv = X
(
(XTX)−1XTv

)
can be written as linear combination of vectors inX, so

Hv · (Hv− v) = 0

soH is a matrix of an orthogonal projection. This ends the theory part.

4.3 Practice Questions
In this part we will apply the theory to predict body height based on hand span, foot length,
and femur length.
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8. In the Google spreadsheet I provided, anonymously, enter for yourself X1 = “hand
span”,X2 = “length of foot”,X3 = “body height”

Done!

9. Copy the collected data into a spreadsheet of your own.

We will use Mathematica; this is done using the following.

In[5]:= raw = Import["/Users/student/Downloads/MA661-2018 Regression.xlsx"][[1]]
Out[5]= {{X1,X2,X3,Y},{Hand(cm),Foot(cm),Femur(cm),Height(cm)},{18.1,25.5,48.,173.},
{18.9,23.4,45.,166.3},{19.2,22.,48.,168.},{19.1,22.3,48.2,166.},{20.3,29.,53.,174.},
{20.4,25.,45.6,173.},{20.5,24.8,43.,179.},{18.7,22.5,54.5,178.},{20.5,23.9,53.5,176.},
{19.5,26.,45.5,173.5},{20.3,26.,46.5,175.},{20.3,25.,53.,185.},{20.,22.,44.,156.},
{20.,26.,48.,174.},{15.7,21.1,45.,170.},{20.5,25.5,47.5,178.5}}

10. Using the above theory, create a linear best-fit model to preduct Y from X1, X2 and
X3. Use technology as appropriate. Which input provides the best predictor for Y ?

To remove headers, we remove the first two items in raw:

In[6]:= data = Delete[Delete[raw,2],1]
Out[6]= {{18.1,25.5,48.,173.},{18.9,23.4,45.,166.3},{19.2,22.,48.,168.},
{19.1,22.3,48.2,166.},{20.3,29.,53.,174.},{20.4,25.,45.6,173.},{20.5,24.8,43.,179.},
{18.7,22.5,54.5,178.},{20.5,23.9,53.5,176.},{19.5,26.,45.5,173.5},{20.3,26.,46.5,175.},
{20.3,25.,53.,185.},{20.,22.,44.,156.},{20.,26.,48.,174.},{15.7,21.1,45.,170.},
{20.5,25.5,47.5,178.5}}

Looks good! Next we find the vectors X1,X2,X3, for hand span, foot length, and femur
length respectively.

In[9]:= X1=data[[All,1]];
In[10]:= X2=data[[All,2]];
In[11]:= X3=data[[All,3]];
In[12]:= Y=data[[All,4]];

Then we generate the vector X0 with all elements being 1. We make sure that X0 have
the same length (dimension) as X1 by

In[13]:= X0=ConstantArray[1,Length[X1]];

Next we combine X0,X1,X2,X3 to createX.

In[15]:= X=Transpose[{X0, X1, X2, X3}];

Finally we find β using β = (XTX)−1XT :

In[17]:= beta=Inverse[Transpose[X].X].Transpose[X].Y
Out[17]= {106.816,-0.056452,1.30874,0.733368}

Therefore, we get a best-fit linear model of

ŷ = 106.8161− 0.056452X1 + 1.30874X2 + 0.733368X3,
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that is, the height y is predicted from hand span x1, foot length x2, and femur length x3 as

ŷ = 106.816− 0.056452x1 + 1.30874x2 + 0.733368x3.

Since the coefficient 1.30874 of foot length is largest, foot length is the best predictor of
height.

Finally, here is a comparison of the predicted height and actual height (all units are cm).

In[27]:= comparisonTable=Transpose[{X1,X2,X3,Y,X.beta,Y-X.beta}];
TableForm[Prepend[comparisonTable,{"Hand", "Foot", "Femur", "Height",
"PredictedHeight","Residual"}]]
Out[28]=
Hand Foot Femur Height Predicted Residual
18.1 25.5 48. 173. 174.369 -1.36886
18.9 23.4 45. 166.3 169.375 -3.07525
19.2 22. 48. 168. 169.726 -1.72619
19.1 22.3 48.2 166. 170.271 -4.27113
20.3 29. 53. 174. 182.492 -8.49208
20.4 25. 45.6 173. 171.825 1.17543
20.5 24.8 43. 179. 169.65 9.34958
18.7 22.5 54.5 178. 175.176 2.82433
20.5 23.9 53.5 176. 176.173 -0.172921
19.5 26. 45.5 173.5 173.111 0.389225
20.3 26. 46.5 175. 173.799 1.20102
20.3 25. 53. 185. 177.257 7.74286
20. 22. 44. 156. 166.748 -10.7476
20. 26. 48. 174. 174.916 -0.915968
15.7 21.1 45. 170. 166.546 3.45419
20.5 25.5 47.5 178.5 173.867 4.63331

The residual sum of squares (RSS) is 412.765, found using the following code:

errbeta=Y-X.beta;
Sum[errbeta[[i]]^2,{i,Length[X1]}]
Out[62]= 412.765

This completes the project.
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5 Row operations

5.1 Introduction
Row reduction is an algorithm for solving systems of linear equations.

Any system of linear equations can be written in matrix form Ax = b. To solve this sys-
tem, onlyA andb are necessary, therefore it suffices to work with the augmented coefficient
matrix [A | b].

There are three operations that can be performed on this matrix without changing the
solution of the modified system, and can reduce the system to a normal form from which
the solution is immediately apparent. The operations are:

Definition 5.1 (Row operations). • Multiplying a row by a nonzero number

• Adding a multiple of a row onto another row

• Exchanging two rows

and the resulting normal form is called row-reduced echelon form, and it is unique to
the original system.

Definition 5.2.
A matrix is in echelon form if

(i) In every row, the first nonzero entry is 1, called a pivotal 1.

(ii) The pivotal 1 of a lower row is always to the right of the pivotal 1 of a higher row

(iii) In every column that contains a pivotal 1, all other entries are 0.

(iv) Any rows consisting entirely of 0’s are at the bottom.

Example 5.3. These matrices are in echelon form:1 0 0 −3

0 1 0 −2

0 0 1 0

 ,
0 1 3 0 0 3 0 −4

0 0 0 1 −2 1 0 −1

0 0 0 0 0 0 1 2

 .
These are not: 1 0 0 2

0 0 1 −1

0 1 0 1

 ,
1 1 0 1

0 0 2 0

0 0 0 1

 .
Example 5.4. The following is a series of row operations on a matrix, reducing it to an
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echelon form.  1 2 3 1

−1 1 0 2

1 0 1 2

 R2→R2+R1−−−−−−−→
R3→R3−R1

1 2 3 1

0 3 3 3

0 −2 −2 1


R2→R2/3−−−−−−→

1 2 3 1

0 1 1 1

0 −2 −2 1


R1→R1−2R2−−−−−−−−→
R3→R3+2R2

1 0 1 −1

0 1 1 1

0 0 0 3


R3→R3/3−−−−−−→

1 0 1 −1

0 1 1 1

0 0 0 1


R1→R1+2R3−−−−−−−−→
R2→R2−R3

1 0 1 0

0 1 1 0

0 0 0 1


Exercise 5.5. Reduce the following matrices to echelon form:

[
1 2 3

4 5 6

]
,

1 2 3 5

2 3 0 −1

0 1 2 3


Solution. [

1 2 3

4 5 6

]
R2→R2−4R1−−−−−−−−→

[
1 2 3

0 −3 −6

]
R2→−R2/3−−−−−−−→

[
1 2 3

0 1 2

]
R1→R1−2R2−−−−−−−−→

[
1 0 −1

0 1 2

]
1 2 3 5

2 3 0 −1

0 1 2 3

 R2→R2−2R1−−−−−−−−→

1 2 3 5

0 −1 −6 −11

0 1 2 3


R2→−R2−−−−−−→

1 2 3 5

0 1 6 11

0 1 2 3


R1→R1−2R2−−−−−−−−→
R3→R3−R2

1 0 −9 −17

0 1 6 11

0 0 −4 −8


R3→−R3/4−−−−−−−→

1 0 −9 −17

0 1 6 11

0 0 1 2


R1→R1+9R3−−−−−−−−→
R2→R2−6R3

1 0 0 1

0 1 0 −1

0 0 1 2
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5.2 Applications
Applications of row reduction:

• Solve systems of linear equations, of course
• Checking linear independence of vectors (v1,v2, . . . ,vk): row-reduce [v1 · · ·vk] and
see if it reduces to a matrix giving the unique trivial solution. This can also be used to
find bases for kernels.

• Finding inverses of a matrix A: by solving AX = I for X = [x1 · · ·xk]. Since only the
coefficients matter when row-reducing, we can row-reduce [A | I]. If A is invertible,
this will row-reduce to [I | A−1].

Exercise 5.6. Row-reduce to find the inverse of1 0 −2

2 −1 0

0 1 3

 .
Solution. 1 0 −2 1 0 0

2 −1 0 0 1 0

0 1 3 0 0 1

 R2→R2−2R1−−−−−−−−→

 1 0 −2 1 0 0

0 −1 4 −2 1 0

0 1 3 0 0 1


R2→−R2−−−−−−→

 1 0 −2 1 0 0

0 1 −4 2 −1 0

0 1 3 0 0 1


R3→R3−R2−−−−−−−→

 1 0 −2 1 0 0

0 1 −4 2 −1 0

0 0 7 −2 1 1


R3→R3/7−−−−−−→

 1 0 −2 1 0 0

0 1 −4 2 −1 0

0 0 1 − 2
7

1
7

1
7


R1→R1+2R3−−−−−−−−→
R2→R2+4R3

 1 0 0 3
7

2
7

2
7

0 1 0 6
7 − 3

7
4
7

0 0 1 − 2
7

1
7

1
7

 ■

Row operations also have another application:

• Find bases for images:
– Since row operations do not change the set of solutions, columns in the original
matrix are linearly independent iff they are linearly independent in the echelon
form.

– To find a basis of imA, row-reduce A, determine all pivotal columns (containing
a pivotal 1) and select the corresponding columns from A.

Here’s a summary from the book. See more on p.198.

Theorem 5.7 (Linear independence and span; 2.4.5 in book). Let v1, . . . ,vn be vectors in
Rn, and let A be the n× k matrix [v1 · · ·vk]. Then
(a) v1, . . . ,vn are linearly independent iff the r.r.e.f matrix Ã has a pivotal 1 in every

column.
(b) v1, . . . ,vn spans Rn iff the r.r.e.f matrix Ã has a pivotal 1 in every row.
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5.3 Elementary matrices
Each row operation can also be described as a multiplication by elementary matrices (Def.
2.3.5 in the book)

Definition 5.8.
There are three types of elementary matrices:

• Type 1 elementary matrix E1(i, x): the identity matrix I, except that the entry (i, i) is
x. It corresponds to multiplying row i by x.

• Type 2 elementary matrix E2(i, j, x): the identity matrix I, except that the entry (i, j)
is x. It corresponds to adding x times row j to row i

• Type 3 elementary matrix E3(i, j), i ̸= j: the identity matrix I, except that the entries
(i, i), (j, j) are 0 and entries (i, j), (j, i) are 1. It corresponds to swapping rows i and j.

Clearly, elementary matrices are invertible (and their inverses are obvious) Since ele-
mentary matrices correspond to row operations, every invertible matrixA can be written as
amultiplication of elementarymatrices. This is useful theoretically. For example, if wewant
to show detAB = detAdetB, it suffices to show that detEB = detE detB for elementary
matrices E. Here, Mathematica can be useful in sounding the validity of conjectures to be
proved (= i.e. it’s easy to just try some cases in Mathematica)

6 Eigenstuff

6.1 Change of basis
Come to think of it, there is nothing special about the standard bases in Rn. We can easily
work on other bases as well, and we will use the notation x =

[...]
B
to denote x written in

form of the basis B.
However, how dowe knowwhat happens whenwe change the basis? Turns out when we

want to change from basis B1 to B2, there is a change of basis matrix [ΦB1→B2 ] that takes
any [x]B1

and returns [x]B2
.

Basically, we are finding the matrix of id : Rn → Rn w.r.t. the two bases. To do so, take
each vector fromB1 as input and express the result as linear combinations of vectors inB2.
The scalars will form the columns of [ΦB1→B2

]. This sounds pretty confusing, so let’s work
out an example.

Example 6.1 (Changing basis inR2). To change basis fromB1 = (v1,v2) toB2 = (w1,w2),
we solve

v1 = α11w1 + α12w2

v2 = α21w1 + α22w2

to get

[ΦB1→B2
] =

[
α11 α21

α12 α22

]
.

This is equivalent to row-reducing[
B2

∣∣∣B1

]
→
[
I
∣∣∣[ΦB1→B2 ]

]
.
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The following is not covered in class, don’t cite it in the test!
It is easy to see that this works for Rn as well, and also that it is equivalent to

ΦB1→B2
= [B1][B2]

−1.

Thismight feel a bit counterintuitive (why not [B1]
−1[B2]?) but consider this: obviously,

ΦB1→I is [B1] and not [B1]
−1. Another view: if we change the basis from [B0] (standard

basis, = I) to B1, it should have the opposite effect of taking the transformation T defined
by B1 because doing both cancels out: if you change the basis to B1 while transforming
everything by the matrix B1 as well, you just get the same thing. Back to class notes.

Given T : Rn → Rn and matrix [T ], how do we find [T ]B ? Answer:

TB = ΦB0→B ◦ T ◦ ΦB→B0

so
[T ]B = [B]−1[T ][B]. (4)

Explanation: if you do this on [v]B , the ΦB→B0
take it toB0, where you can apply T , and

then use ΦB0→B to take it back to B.
More explanation: the function TB looks like this

func T_B (v_B: vector_B) -> vector_B {
v = v_B as vector
return T(v) as vector_B

}

and vector_B is not the same ‘datatype’ as vector.
Let’s do a numerical example.

Example 6.2. Find the rotation matrix by π
6 w.r.t. basis B1 =

([
1

1

]
,

[
−1

1

])
. We have

[
Rπ

6

]
B1

=

[
1 −1

1 1

]−1 [√
3
2 − 1

2
1
2

√
3
2

][
1 −1

1 1

]
=

[√
3
2 − 1

2
1
2

√
3
2

]
.

Whoops we got the same matrix. This makes sense though as B1 is basically just a rota-
tion and scaling of the standard basis.

Equation (6.1) works when we change between any two bases B1, B2 too:

[T ]B2
= [ΦB1→B2

][T ]B1
[ΦB1→B2

]−1.

How do we classify the matrices that can represent the same transformation? There is a
term for it.

Definition 6.3.
Two matrices S, T are said to be similar if there is an invertible matrix U such that

S = UTU−1.
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6.2 Eigenvalues and eigenvectors
Definition 6.4.
Let V be a vector space, U a subspace, T ∈ (V ). Then U is invariant under T is TU ⊆ U . In
other words: if v ∈ U then T (v) ∈ U .

Exercise 6.5. IfU is a 1-dimensional invariant subspace of V , then there exists λ ∈ R such
that T|u(v) = λv for v ∈ U .

Solution. Let (b) be a basis of U and choose λ from T (b) = λb. Then, for any v = αb ∈ U ,
T (v) = T (αb) = αT (b) = αλb = λv. ■

If we have a basis ofB = (b1,b2, . . . ,bn) of V satisfying: for all i = 1, . . . , n, there exists
a scalar λi such that T (bi) = λibi. What would [T ]B look like?

[T ]B =


λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn


GivenT ∈ L(V ), is there aλ satisfyingT (v) = λv for some v ̸= 0? Let’s see. IfT (v) = λv

then
(T − λI)v = 0,

so T − λI has a non-trivial kernel, and is not invertible, so

det(T − λI) = 0,

which gives an equation for λ (which is a polynomial of degree n.) This brings us to the
definition:

Definition 6.6 (Eigenvalues and eigenvectors).
If T ∈ L(V ) and there exists v ̸= 0 such that T (v) = λv for some λ ∈ R, then v is called an
eigenvector to eigenvalue λ.

Note that each eigenvector spans a 1-dimensional invariant subspace for T .

Definition 6.7.
If V has a basis consisting of eigenvectors, this basis is called the eigenbasis.

As always, there is a numerical example.

Example 6.8. To find eigenvalues and eigenvectors of

T =

[
2 1

1 −1

]
.

We want

0 = det(T − λI) =

∣∣∣∣∣2− λ 1

1 −1− λ

∣∣∣∣∣ = (2− λ)(−1− λ)− 1 = λ2 − λ− 3,

so λ =
1±

√
13

2
with corresponding eigenvectors

[
1

λ− 2

]
(these eigenvectors can be found

by solving (T − λI)v = 0.)
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Theorem 6.9 (Eigenvectors with distinct eigenvalues are linearly independent). If A :

V → V is a linear transformation, and v1, . . . ,vk are eigenvectors ofAwith distinct eigen-
values λ1, . . . , λk, then v1, . . . ,vk are linearly independent.

Proof (by contradiction, from book). If v1, . . . ,vk are not linearly independent, then there
is a first vector vj that is a linear combination of the earlier ones. Thus we can write

vj = a1v1 + · · ·+ aj−1vj−1,

where at least one coefficient is not zero, say ai. Apply λjI −A to both sides to get

0 = (λjI −A)vj = (λjI −A)(a1v1 + · · ·+ aj−1vj−1) =
j−1∑
i=1

ai(λj − λi)vi.

which is a linear combination of v1, . . . ,vj−1 without all coefficients being zero; this is the
desired contradiction. ■

Complex and repeated eigenvalues are studied in the context of Jordan normal forms,
which is beyond the range of this class.

We have been studying eigenvalues without even thinking if they actually exist or not.
Fortunately, they do:

Theorem 6.10. Eigenvalues always exist.

Proof. First, note that we can apply polynomials to square matrices. For any nonzerow ∈
Cn, there is a smallest m such that Amw is a linear combination of w, Aw, . . . , Am−1w.
(Such an m has to exist because Cn has finite dimension n.) Write the linear combination
as

a0w+ a1Aw+ · · ·+ am−1A
m−1w+Amw = 0.

Then we can use the coefficients to define a polynomial

p(t) := a0 + a1t+ · · ·+ am−1t
m−1 + tm

which satisfies p(A)w = 0 and is the lowest degree polynomial with this property. (Wow,
this resembles minimal polynomials.)

By FTA, p(t) has at least one root λ, so we can write p(t) = (t − λ)q(t) for some q with
deg q = m− 1. Define v = q(A)w. Then,

(A− λI)v = p(A)w = 0,

so Av = λv. Now we only have to check that v ̸= 0, but this is evident from q ̸= 0 and
deg q < deg p. ■

Thenext question is how to find an eigenvalue. That is easy. Just row reducew, Aw, . . . , Anw.
Use the first non-pivotal column to get a linear combination/polynomial, and use the above.

Mathematica implementation:

a = RandomInteger[{-10, 10}, {7, 7}];
MatrixForm[a]
w = Table[0, {Length[a]}];
w[[1]] = 1;
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paw = Transpose[Table[MatrixPower[a, k].w, {k, 0, Length[a]}]];
rrd = RowReduce[paw];
b = rrd[[All, -1]]
p[t_] := Sum[-b[[i]] t^(i - 1), {i, 1, Length[b]}] + t^Length[b]
p[t]
lambda1 = t /. NSolve[p[t] == 0, t, Reals][[1]]
Eigenvalues[1. a]
q[t_] := PolynomialQuotient[p[t], (t - lambda1), t];
q[t]
qcoeff = CoefficientList[q[t], t];
qa = Sum[qcoeff[[i]]*MatrixPower[a, i - 1], {i, 1, Length[qcoeff]}];
v = Normalize[qa.w];
MatrixForm[v]
Eigenvectors[1. a]

6.3 Spectral Theorem
Let A be a diagonalizable matrix, that is, a matrix similar to a diagonal matrix. It follows
thatA has an eigenbasisB whereD = [A]B is a diagonalmatrix. Therefore, forΦ = ΦB0→B ,

ΦAΦ−1 = D = diag (λ1, . . . , λn).

Consider the kth power of A:

Ak = (Φ−1DΦ)k = Φ−1D���ΦΦ−1D · · ·���ΦΦ−1DΦ = Φ−1DkΦ = Φ−1diag (λk1 , . . . , λkn)Φ.

What is eA?

eA =

∞∑
k=0

Ak

k!
=

∞∑
k=0

Φ−1diag (λk1 , . . . , λkn)
k!

Φ

= Φ−1

( ∞∑
k=0

diag (λk1 , . . . , λkn)
k!

)
Φ = Φ−1diag (eλ1 , . . . , eλk)Φ.

This leads us to the Spectral Theorem, named after the spectral of a matrix, which is the
collection of its eigenvalues. The spectral itself is apparently named after literal spectrum
in physics based on some quantum physics phenomenon.

Theorem 6.11 (Spectral Theorem). Let A be a symmetric n × n matrix. Then, A has an
orthonormal eigenbasis, and all its eigenvalues are real.

6.4 Properties of eigenvalues
Eigenvalues of matrices have several properties:

(i) If λ is an eigenvalue of A, then 1
λ is an eigenvalue of A−1 provided λ ̸= 0 and A−1

exists.

(ii) A is invertible iff 0 is not an eigenvalue of A.
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(iii) If λ is an eigenvalue of A then it is an eigenvalue of AT .

(iv) If A is diagonalizable with eigenvalues (λ1, . . . , λn) then detA =
∏n

i=1 λi.

(v) Let A = [aij ] and define trace of A tr (A) =
∑n

i=1 aii. Then, tr (A) =
∑n

i=1 λi.

The last two properties imply that the trace and determinants are invariant under a change
of basis.

Exercise 6.12. Show properties (i) to (iv) above for general matrices, and (v) for 2 × 2

matrices.

Solution. Here we assume A has size n× n. We will prove (v) for general matrices anyway.

(i) Let v be an eigenvector to λ. We have Av = λv, so

1

λ
(λv) = A−1Av = A−1(λv),

hence 1
λ is an eigenvalue of A

−1.

(ii) 0 is an eigenvalue of A ⇐⇒ there is a vector v ̸= 0 with Av = 0 ⇐⇒ A has a
nontrivial kernel ⇐⇒ A is not invertible (because A is a square matrix)

(iii) For any matrix A0, λ is an eigenvalue of a matrix A0 iff λ is a root of the polynomial
det(A0 − xI). Since (A− xI)T = AT − xI,

det(AT − xI) = det(A− xI)T = det(A− xI)

as polynomials, so λ is an eigenvalue of A iff it is an eigenvalue of AT .

(iv) Let U be the change of basis matrix from the standard basis to the eigenbasis ofA. We
have

n∏
i=1

λi = det diag (λ1, . . . , λn) = detUAU−1 = detU detAdetU−1 = detA.

(v) Consider det(A−xI) as a polynomial in x. In the Leibniz sum of the determinant, the
diagonal term gives

n∏
i=1

(aii − x) = (−1)nxn − (−1)n
n∑

i=1

aii + p(x)

for some pwith deg p ⩽ n−2. As any other permutationmisses the diagonal in at least
two rows, and thus has degree ⩽ n− 2,

det(A− xI) = (−1)nxn − (−1)n
n∑

i=1

aii + q(x)

for some q with deg q ⩽ n− 2. As λ1, . . . , λn are the roots of det(A− xI), by Vieta,

n∑
i=1

λi = −
−(−1)n

∑n
i=1 aii

(−1)n
=

n∑
i=1

aii = trA.
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6.5 Test review
• Suppose we have bases B1 = (b1,b2), B2 = (c1, c2).

• To find the matrix ΦB1→B2
, we use row reduction:[

B2

∣∣∣B1

]
→
[
I
∣∣∣ΦB1→B2

]
.

This matrix sends a vector v written in B1 to the vector v written in B2, that is, if
α1b1 + α2b2 = v = β1c1 + β2c2 then[

β1
β2

]
B2

= ΦB1→B2

[
α1

α2

]
B1

.

• The matrix for the inverse transformation is simply the inverse matrix:

ΦB2→B1
= Φ−1

B1→B2
.

• If we have a transformation T ∈ L(V ) then

[T ]B2
= ΦB1→B2

[T ]B1
ΦB2→B1

.

• Eigenbasis: if BE is an eigenbasis for T then

[T ]BE
= diag (λ1, . . . , λn)

where T (vi) = λivi for vi ∈ BE .

• If T is symmetric then Spectral theorem guarantees an orthonormal eigenbasis.

• To actually find an eigenbasis, solve det(A − λI) = 0 for λ and find all linearly inde-
pendent eigenvectors for all λi. If all eigenvalues are distinct, we have an eigenbasis.
Also, eigenvectors to distinct eigenvalues are always linearly independent.

• If we have repeated eigenvalues, there may or may not be linearly independent eigen-
vectors. For example, 0 1 0

0 0 1

0 0 0



has 0 as an eigenvalue ofmultiplicity 3with

10
0

 as the only linearly independent eigen-
vector. However, I has 1 as an eigenvalue of multiplicity 3 but with (e1,e2,e3) as an
eigenbasis.

• Suppose A has an eigenbasis. We can write A = Udiag (λ1, . . . , λn)U−1 for invertible
U . Then,

Ak = Udiag (λk1 , . . . , λkn)U−1.
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7 Multilinear algebra

7.1 Quadratic forms
A quadratic form is a homogeneous polynomial of degree 2. For example,

q(x, y, z) = c11x
2 + c12xy + c13xz + c22y

2 + c23yz + c33z
2

is a quadratic form in three variables.
We can relate quadratic forms to vectors and matrices as follows:

q(x, y, z) =
[
x y z

] c11 1
2c12

1
2c13

1
2c12 c22

1
2c23

1
2c13

1
2c23 c33


xy
z

 .
In general, for a quadratic form q, there is a symmetric matrixMq such that

q(x) = xTMqx.

Definition 7.1 ((posi/negative) (in/semi)definite).
Let q(x) be a quadratic form. The q is called

• positive definite if q(x) ⩾ 0 for all x, and q(x) = 0 iff x = 0.

• positive semidefinite if q(x) ⩾ 0 for all x.

• negative definite if q(x) ⩽ 0 for all x, and q(x) = 0 iff x = 0.

• negative semidefinite if q(x) ⩽ 0 for all x.

• indefinite otherwise

Clearly, the definiteness of a (real) diagonal matrixM can be determined easily by the
signs of its elements. Therefore, to determine the definiteness of each q, we want to write
Mq in a basis B which makes it a diagonal matrix.

SinceMq is symmetric, the Spectral Theorem guarantees us an orthonomal eigenbasis
B. We show that choosing B works. Since B is orthonormal, Φ = ΦB0→B has orthonormal
columns, so ΦTΦ = I. Set y = Φx. Then,

qA(y) = (Φ−1y)T (Φ−1y) = yT
[
(Φ−1)TAΦ−1

]
y

so we want (Φ−1)TAΦ−1 to be diagonal. However, (Φ−1)T = (ΦT )T = Φ, so

(Φ−1)TAΦ−1 = ΦAΦ−1 = diag (λ1, . . . , λn)

is diagonal.

7.2 k-forms
Definition 7.2.
A k-form on Rn is an anti-symmetric multilinear function (Rn)

k taking in k vectors and
returning a number. The set of k-forms is donated as Ak

c (Rn).
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Example 7.3. The 2-form dx1 ∧ dx2 takes in two vectors and outputs the determinant of
the square matrix formed by the first and second entries of the vectors.

dx1 ∧ dx2




1

2

−1

1

 ,


3

−2

1

2


 =

∣∣∣∣∣1 3

2 −2

∣∣∣∣∣ = −8

Exercise 7.4 (6.1.3 in book). Compute the following numbers:

(a) dx1 ∧ dx4



1

0

1

2

 ,


1

−3

−1

2


 =

∣∣∣∣∣1 1

2 2

∣∣∣∣∣ = 0.

(d) dx1 ∧ dx2 ∧ dx2 (something) = 0 because dx2 is repeated.

Definition 7.5.
dx1 ∧ dx2 is an example of elementary k-forms: those of the form

dxi1 ∧ dxi2 ∧ · · · ∧ dxik , i1 < i2 < · · · < ik.

Example 7.6. There are 24 elementary k-forms inR4, corresponding to subsets of {1, 2, 3, 4}:

1, dx1, · · · , dx4, dx1∧dx2, · · · , dx3∧dx4, dx1∧dx2∧dx3, · · · , dx2∧dx3∧dx4, dx1∧dx2∧dx3∧dx4.

Since k-forms can be added together or multiplied by a scalar, they form a vector space.
As the last example illustrates, the vector space of k-forms in Rn has dimension

(
n
k

)
.

Let x be a point, and v1,v2, . . . ,vk be vectors in Rn. Then, Px(v1, . . . ,vk) is the parallel-
ogram spanned by (v1, . . . ,vk) attached to point x.

A k-form field in Rn is a set of k-forms in which the scalars depend on (x1, . . . , xn).

Essentially, it takes a parallelogram in.

Example 7.7. ϕ = 3dx1 ∧ dx3 is a 2-form; ω = ex+ydx ∧ dy is a 2-form field.

Example 7.8. cos(xz)dx ∧ dy is a 2-form field on R3. As an example of evaluation,

cos(xz)dx ∧ dy


P

1

2

π




10
1

 ,
22
3





= cos(1 · π)

∣∣∣∣∣1 2

0 2

∣∣∣∣∣ = −2.

We used thewedge∧ symbol in our notation for k-forms. This represents a wedge prod-
uct, which has the following formal definition, which I guess comes from the need to make
sure that ∧ preserves antisymmetry as well as multilinearity.

Definition 7.9.
The wedge product of the forms ϕ ∈ Ak

c (Rn) and ω ∈ Aℓ
c(Rn) is the element ϕ ∧ ω ∈

Ak+ℓ
c (Rn) defined by

(ϕ∧ω)(v1,v2, . . . ,vk+l) =
∑

σ permutes {1,2,...,k+ℓ}
σ(1)<···<σ(k)

σ(k+1)<···<σ(k+ℓ)

sgn(σ)ϕ(vσ(1), . . . ,vσ(k))ω(vσ(k+1), . . . ,vσ(k+ℓ)).
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Example 7.10. The wedge product of ϕ ∈ A2
c(Rn) and ω ∈ Ac(Rn) is

ϕ ∧ ω(v1,v2,v3) = ϕ(v1,v2)ω(v3)− ϕ(v1,v3)ω(v2) + ϕ(v2,v3)ω(v1).

Exercise 7.11 (6.1.11 in book). Let ϕ and ψ be 2-forms. Write out ϕ ∧ ψ(v1,v2,v3,v4).

Answer:

ϕ ∧ ψ(v1,v2,v3,v4) = ϕ(v1,v2)ψ(v3,v4)− ϕ(v1,v3)ψ(v2,v4) + ϕ(v1,v4)ψ(v2,v3)
+ ϕ(v2,v3)ψ(v1,v4)− ϕ(v2,v4)ψ(v1,v3) + ϕ(v3,v4)ψ(v1,v1)
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