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Abstract

Course notes for Hotchkiss class MA661 (Linear Algebra). Proofs in here are not guar-
anteed to be rigorous. The sections are split according to tests and projects.
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1 Vector spaces

1.1 Properties

Example 1.1. (a) These are linear combinations in R?:

1 % sin 4 1 % sin4
31 —v2 L +v2|cos7|, —1|1|+12|L| —0]cos7
0 % el? 0 i el?

(b) Some spans:

1

. 1 . .
span | (0], is the xy-plane, span ( L} > isthelinex =y

0
1
0
1] [1 . . .
(¢) The vectors { L , [ ] } are linearly independent because if

-1
1‘|
=0
-1

then a + 8 = a — = 0 which implies o = 8 = 0.

(d) The vectors { lﬂ , [ 1 ] , B] } are not linearly independent (= are linearly depen-

1

1+B

(07

-1

dent) because
2

3

1
1

1
-1

5| |+1 +2|7| =0

We'll now start talking about vector spaces, which follow some properties of R™ (to be
exact, properties that can be proven without relying on the properties of R.)

Definition 1.2.
Any set V which satisfies the following axioms is called a vector space:
(1) (V,+)isanabelian group,i.e. V has an associative and commutative addition (+) with
identity element 0 and additive inverses.
(i) Elements of V' can be scaled by scalars (which are members of a field F; in this class
we will only consider F' = R, C).
(iii) Forany a, 3 € F,v,w € V the following properties must hold:
1. (aB)v = a(Bv)
2. (a+p)v=av+pv
3. a(v+w)=av+aw

Example 1.3. These are all vector spaces over R:
(a) C,andsoisC".
(b) The set P,,(R) of polynomials in R[z] with degree at most n.



(c¢) The set of m x n matrices with real entries.

(d) span(sinz,cosx) = {asin(f + z) | a, f € R}.

(e) R°°: the set of all real sequences

(f) C™(R): the set of all n-continuously-differentiable functions on R.

(g) C°°(R): analytic functions on R.

(h) Set of step functions (= piecewise constant) on R.
Exercise 1.4. A collection of vectors in a vector space V' containing 0 is linearly dependent.
Solution. 1-0 + 0 - everything else = 0. B

Exercise 1.5. A collection of vectors in a vector space V containing a duplicate is linearly
dependent.

Solution. 1-v+ (—1)-v+0-everything else = 0. B

Exercise 1.6. A collection (vy, - - - , vy ) of vectorsislinearly independent iff anyw € span(vy, - - -

is a unique linear combination of (vy, - - -, vy).

Solution. (=) Ifthere are two ways, subtract them to get a way to represent 0 as a nontrivial
linear combination of (vy, -, vi). (<) If (v4,- -+ , V) is linearly dependent then there are
> 1 ways to write 0 as a linear combination of (v,,--- ,vy). B

Exercise 1.7. A collection (vy, - - - ,vy) of vectors is linearly independent iff no v; can be
written as a linear combination of the others.

Solution. (=) Ifv; = 37, a; - vithen —1-vj+ >, ;- Vi = 0. (<) If (ve, -+, v) Is
linearly dependent then there is a way to write > «; - v; = 0 without all «;’s being zero. Pick
a; #0andwritev; =3, =% - v;. B

@

1.2 Subspaces

Definition 1.8.
Let V be a vector space and W C V. Then, W is called a subspace of V' if

(i) W is closed under vector addition, and

(i) W is closed under scalar multiplication.

Example 1.9. Ifv,,..., v € V, then span(vy,..., Vi) is a subspace of V

Solution. Let w,,w, € span(vy, ..., Vy), so there are scalars «;, 8;’s such that w, = > a;v;
and w, = > 3;v;. Therefore, w, + wo = > (a; + B;)vi € span(vy,...,vk) and yw, =
S(ai)vi € span(vy, ..., vi.). W

Exercise 1.10. Let V = R? and ¢, b € R. Show that

e

€ R?

ax+by=0}

is a subspace of R?

, Vi)



T+ 2o
Y1+ Y2

x

Solution. Letw, = [ ceW. () wy +wy = satisfies

T2
7w2 =

Y2

Y1

a(r1 + x2) + b(y1 + y2) = (azx1 + by1) + (azs +by2) =0

0wy + W, € W. (ii) for any real a, aw, = [azl satisfies aawy + bay; = alazy +by) =0
QT2

soaw, € W. R

Exercise 1.11. Show that

is not a subspace of R?
. 0 0
Solution. Just note that w = ) € W but 2w = 0 gw.

Exercise 1.12. If W is a subspace of V, then 0 € W, and foranyw € W, —w € W.
Solution. Wehave)-w=0¢c Wand (—-1) - w=-wecW. R
Corollary 1.13. If W C V does not contain 0, W cannot be a subspace of V.
Exercise 1.14. If U, W are subspaces of V, then

(a) U N W is a subspace,

(b) U U W may not be a subspace, and

@ U+W={u+w|ueUwe W}isasubspace.

Solution. (a) Letv,,v, € UNW and « be a scalar. Since U and W are subspaces, v, + V»
and av, are members of both U and W, and thus are both in U N .

=]

thenv, = lé} , Vo = L] ceUUWbutv, +v, = lﬂ gUUW.

X

(b) Choose V =R?, U = { 0

€ RQ} (which are clearly subspaces),

(c) Letvy,vo, € U + W. Write v; = u; + w; with u; € U and w; € W. Now we can
check that v, + v, = (uy + u,) + (Wy + w,) € U + W and that for any scalar «,
avy=ouy +aw, e U+ W. R

We start with examples of how to write proofs for the previous exercise. The main idea
is to just don’t forget details (in particular, be more detailed than my proofs above).

Exercise 1.15. Let V = R2.
(a) Find a subset X C V that is closed under addition but not scalar multiplication

(b) Find a subset Y C V that is closed under scalar multiplication but not addition

Solution. (a) 72,7,Q,Q[V5],...

xyzO}l

(b) Union of the axes: { [ﬂ
Yy



1.3 Bases and dimensions

Definition 1.16.
Let V be a vector space and B = (vy,Va, ..., Vy) a system of vectors that is linearly indepen-
dent and spans V then B is called a basis of V.

Observation 1.17. We will see that every basis of a vector space has the same number of
elements. This number is called the dimension of V, denoted by dim V. Note that this is
not a trivial fact; proof will come later.

Example 1.18. Standard basis of R": (e,,€,,...,€y)

where 1 is in the i-th position.

Exercise 1.19. Show that ( El , llll ) is a basis of R2.

Solution. See Exercise 2.1 (c) for linear independence and note that for any v = Z € R?,
a a+b |1 a—b|1
= . .
lb} 2 1 + 2 [— 1

We start with a discussion of Exercise 4.1. A more general example for 4.1(a) is lattices:
sets of the form L = {mv + nw | m,n € Z}. Now we will tackle a famous result/foundation
of Linear Algebra. *drumroll*

Theorem 1.20 (Exchange theorem). Let (v, ..., Vi) be linearly independent in vector
space V, and let (W, Wa,...,wWy) spanV. Then k < .

This has a very important corollary:

Corollary 1.21 (Dimension). Let B; and B, be bases of V then | B;| = | By|, and this value
is called the dimension of V.

Proof. Use the Exchange theorem twice to get |B;| < |Bz| and |Bs| < |By]. O
Now let’s prove the Exchange theorem.

Proof (of Theorem 5.1). Start with the spanning system (wy, w,, ..., w;). We can then re-
peatedly exchange a v; with a w; as follows:

(i) add a new v; in, making the system linearly dependent

(i) write one of the terms as a linear combination of others, and we can force this to be a
w; because v;’s are linearly independent.
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(iii) remove that wj, and still have the system be spanning.

If £ > ¢ we can continue this until all wj’s are replaced by v;’s, and still add another v; in,
making v;i’s linearly dependent which is the desired contradiction. B

Exercise 1.22. Showthat { |y| € R®*|x +y — 2 = 0 ; is a subspace of R? and find a basis
z

and its dimension.

1
Solution. Choosing | (0], works because if x + y — z = 0 then
1
x 1] 1 0
yl =2 (0| +y |1|, andifa |0] + 8 |1| =0
z 1 1 1

then o = 8 = 0. (Note that subspace-ness is implicitly shown since the set is a span of two
vectors.) Therefore the dimension is 2. B

Exercise 1.23. Let P,(R) be the set of polynomials of degree < 2. Find a basis and dim(P»(R)).

Solution. Choose (1, x,2?). This spans P;(R) because ax? + bx + c is equal to itself. It is also
linearly independent because if 0 = az? + bz + ¢ (as a polynomial) but a, b, c are not all then
we have a contradiction with the Fundamental Theorem of Algebra. Hence the dimension
is3.

A very important note: in the proof above we are treating polynomials as functions on
R. If we treat them as formal objects where P = () means every coefficient of P is equal
to every coefficient of @ instead, we can just compare coefficients to geta = b = ¢ = 0.
However, in this class we will stick with the function point of view because we will consider
more functions such as trigonometric and exponential later.

Theorem 1.24. Let V be a vector space.

(@) If (vq,...,vi)islinearly independent, then it can be extended to a basis (vy, . . ., Vi, Wy, . . .
forsomewy, ..., wieV.

(b) If (V4,...,vK) spans V, then it contains a basis of V.

We will again follow the format of theorem statement — corollary statement — proof of
corollary — proof of theorem.

Corollary 1.25. Every vector space has a basis
Proof. Let o # v € V. By (a) we can extend v to a basis of V. O
Proof (of Theorem 6.1). (a) If S = (v,,...,Vvy) is a basis, we are done. If not, choose

w ¢ span S and put win S. Rinse and repeat until done.

Note: this is a bit iffy when it comes to infinite-dimensional stuff—that’s probably be-
cause it can involve the Axiom of Choice. (in fact a lookup on Wikipedia suggest that
this is equivalent to the Axiom of Choice.) However, in this course we will focus on
finite-dimensional vector spaces, so we will just let this slide...



(b) If S = span(vy,...,Vy) is not linearly independent, just remove one v, that is in the
span of others, and repeat until we get a linearly independent set. B

Definition 1.26.
Let V be a vector space with basis B = (by, ..., by). Letx = [2;] € R". Define &5 : R" — V

by ®5(x) = Y z;b;, and this is called the concrete-to-abstract map.

Theorem 1.27. ®y is invertible (one-to-one and onto) and @gl is called the coordinate
map of V w.r.t. B.

Since people were confused about being why invertible is equivalent to being one-to-one
and being onto, here is an aside theorem.

Theorem 1.28. A function f : X — Y isinvertible iff f is bijective. Moreover, the inverse
if unique and denoted by f~!.

Proof. (=) f(x) = f(y) impliesz = f(g(x)) = f(9(y)) = yanda = f(g(x))s0 f isboth one-
to-one and onto. («=) Since f is bijective, for each x € X there is a unique y,, € Y such that
f(yz) = x. Define g(x) := y,. (uniqueness) If g1, g> are inverses of f then g; = g1ofogs = go
forallyeY.l

Let’s go back to what we wanted to prove.

Proof (of Theorem 6.4). Just use the span-ness and linear independence of B: if & (x) =
®p(y) then Y (z; — y;)b; = 0sox =y, and if v € V then there is a unique («;) such that
v=> abjsoPg(a)=v. R

This explains the term coordinate map for ®5': for given v, it gives a representation of
v € R™ by giving the scalars that compose it.

a
Example 1.29. Let V = P»(R) and B = (1,z,2?). Then, ®5 | |b| | = a + bz + c2? and
C
1
o5 (1+ 2z +32%) = |2
3

Exercise 1.30. Determine whether S = {v € R? | v;v5v3 = 0} is a subspace of R?

Answer: No.

1 0 0
Solution. Itsuffices to notethate, = |0| ,e; = |1| ,e3 = 0| arein Sbute, + e, +e; =
0 0 1
1
1| isnotin S. W
1

Exercise 1.31. Suppose the U is a subspace of V. Whatis U + U?
Answer: U + U is always U.

Solution. Any v € U + U can be written as v = u, + u, where u,,u, € U. Since U is a
subspace, it is closed under addition, so v € U, which means U+ U C U. On the other hand,



since U is a subspace, it contains 0, so any u € U can be written asu + 0 € U + U as well.
Therefore U CU + U,andthusU +U =U. R

Exercise 1.32. Prove or give a counterexample: if Uy, Uy, W are subspaces of V' such that
Uy +W = Uy + W, then Uy = Us.

Solution. A counterexample for any nontrivial V is U; = {0},U; = W = V. Clearly,
Uy + W =V = U, + W (the second equality follows from the last exercise) but U; # U,. B

1.4 dmU+W

Exercise 1.33. Suppose U and W are subspaces of R® such that dimU = 3,dim W = 5,
and U + W = R®. Prove that U n W = {0}.

Solution. Suppose that U N W is not {0},sod :=dimUNW > 1. Let B = (by,...,bgq) be
a basis of U N W. We can extend B to a basis By = (by,...,bg,u,...,u3_q) of U and a
basis By = (by,...,ba,Wy,...,W5_q). Now we claim

S: (blv'"abd7u17"~7u3—d7w17"'7w5—d)

spans U + W = R8. This is not hard: for each v € U + W, just write

vV=utw= (Z aib+ ) a;ui) + (Z Bibi+ > a;wi) = (aitBbit Y cjui+>  Biw;.

Now since the standard basis of R® has 8 elements and is linearly independent, by the Ex-
change theorem, we have |S| > 8. However,

S| =d+@B—d)+(B-d) =8—d

which is a contradiction. l

Exercise 1.34 (Homework). Suppose that U and W are both five-dimensional subspaces
of RY. Prove that U N W # {0}

Solution. Pickbases (uy,...,u;)of U and (wy,...,w5)of W. Since (uy, ..., U5, Wy, ..., W5)
has 10 > 9 vectors, it must be linearly dependent in R%—say > a;u; + > 3;w; = 0. This
implieso # Y au; € UNW. A

[This is not in class, but I just want to note] In 6.10 we can actually show that S is linearly
independent as well: suppose that

> b+ > aui+ > Biwi=o0
with the coefficients being not all zero. This implies ) g;w; € U N W. Hence, > 8;w; +
> ~/b; = o for some choice of +/’s, so by linear independence of By, we have 3, = 0.
Therefore we have
Zaiui + Zﬁiwi =0

with the coefficients being not all zero, contradicting the fact that By is a basis of U. From
this we can derive the following theorem:

Theorem 1.35. If U and W are subspaces of a vector space V then

dim(U + W) =dimU + dim W — dim(U N W).



This gives an easy solution to Exercises 6.10 and 11:

Solution (to Exercise 6.10). Since dim(U + W) = 8, we have dim(UNW)=3+5-8=0
soUNW = {o}.

Solution (to Exercise 6.11). Since U + W C R?, dimU + W < 9. Therefore, dim(U N W) >
5+45—-9=1,soUNWisnot{o}. W

[In-class stuff follow:] In class we discussed solutions to Exercises 6.10 and 6.11, and
discussed some questions people have.

Exercise 1.36. Let V be a vector space, and U, W subspaces with bases By and By re-
spectively. Then, U + W = span(By U By).

Solution. Foreachx € V,wehavex € U + W iff there exists uy € U and wy € W withx =
uy + wy iff there exists a;, B withx =37 5 au+ 3 Biwiff » € span(By U By).
]

Exercise 1.37. If a function f : X — Y is invertible the the inverse is unique

See proof in last part of Theorem 6.5. Also, for good problems, check out Linear Algebra
Done Right by Sheldon Axler.

2 Linear transformations

2.1 Kernels and images

Definition 2.1.
Let T : V — W be a transformation between vector spaces. Then ¢ is called linear or vector
space homomorphism if is commutative with linear combinations, that is, for all x,y € V,
a, B eER,

T(ax + By) = aT(x) + BT (y).

Example 2.2. The map 7 : R? — R? defined by

T
Y

3z + 4y
=y

T

is a linear transformation because if v = [xll S W = [@] ,a, 3 € R then
Y2

Y1
T ( ary + B )
ayr + By2
3(azy + Bx2) + 4(ayr + By2)
ary + fra — ayr — ays
3x1 + 41 32 + 4ya
1 — U1 T2 — Y2
= aT(v)+ BT (w).

T(av + Bw)

(07

Example 2.3. Leta € R" and let 7,(x) = a’x. Then T, : R® — R is a linear transforma-
tion. This can be shown using commutative / distributive properties.

10



Definition 2.4.
Let £L(V, W) be the set of linear transformations between V" and .

Note [not covered in class]: If Irecall correctly, £(V, W) is itself a vector space, and when
W = R, it is the dual space V'V of V.

Exercise 2.5. Show thatif T € £(V, W) then T'(0y) = ow.
Solution. T(Ov) = T(OOV + OOV) = OT(Ov) + OT(Ov) =0ow +0ow =0y .1

Example 2.6. The function f : R — R defined by f(x) = 3z + 1 is not a linear transfor-
mation because f(0) # 0. It is called affine linear which means linear added by a constant.

Definition 2.7.
Let T € £(V,W). Then, the kernel of T is defined by

kerT = {v e V|T(v) = o}.
The image of T is defined as
im7T =T(V)={T(v)[veV)}.
The graph representation of 7' (not used) is
I'T ={(v,T(v))[veV}.
Theorem 2.8. (a) kerT is a subspace of V

(b) im T is a subspace of W.

Proof. (a) Ifv,wekerTanda € RthenT(v+w) =T (v)+T(w) =0and T (av+00) =
oT'(v) + 07T (0) = 0.

(b) Pretty much the same thing. B

X
Exercise 2.9. T :R?® — Risdefinedby T | |y| | = 32 + 2y — 2. Find a basis of ker T..
z
1 0
Solution. Letby = |0| and by = [1|. Then, (b, by) is a basis of ker 7" because
3 2
X xr
ifT | |y| | =0then |y| = zbx + yby,
z V4

and if zby + yby = 0 then comparing coefficients givez =y = 0. B

2.2 Matrices

Notation 2.10.
The set of all m x n matrices with real entries is denoted by R”. If A € R then individual

m,n

elements of A are denoted by A = (a;;);Z7 ;-

11



Matrix operations (here A, B € R".)
. Addltlon A —+ B = [aij —+ bij]yiﬁj:l'
« Transposing: A" = [a;i];"7 ,_;.

+ Scalar multiplication: for a € R, a4 = [aay]27 ;.
Observation 2.11. R’ is a vector of dimension mn because of the standard basis
1 ifk=il=j
E;; = (ekg)zlzﬂll =1 where epr = . J

’ 0 otherwise.

+ Matrix multiplication: For A € R, B € R},

Z ik bk:p]
k=1

This can be described as multiplying each row with each column.

m,p

AB =

i=1,j=1

Notation 2.12. e Matrices in column notation:
A= {a1 a, - an}.
o Matrices in row notation:

T

a,
a,”

A=

am?’

Using this notation we can also write matrix multiplication as
AB=| | b, b, - byl =(a’ by

A matrix I € R is called an identity matrix iffor all A € R*, AT = I A = A. This works
only if m = n.

Convince yourself that
o1 --- 0 1 ifi=1
I = . . A = 1€ € .- €nh| = [aij]ij where A5 = J
Toon T 0 otherwise.

For A € R}, B € R? is called an inverse of A if AB = BA = I. It can again be shown
that B is unique, justifying the notation A~! = B.

Example 2.13 (Inverse of 2 x 2 matrices). The inverse of a matrix A =

1 d b
Al = .
ad — be [—c a ]

12

b} where
d

ad —bec #£0is




Definition 2.14.
A matrix A € R” is called

« symmetricif A = AT,
o« antisymmetricif A = —A”, and

e diagonal if a;; = 0 for all ¢ # j.

Exercise 2.15. Show that (AB)T = BT AT,

Solution. Using column and row notation and the fact that (M7)” = M for any matrix M,

T
(AB)T = [aiT : bj]z; = [aiT b_]]g; = [bj -ai}ji =BTAT. m
Exercise 2.16. For any matrix 4, A7 A is symmetric.

Solution. Let A € R™, so AT € R?,, so AT A is defined. Now,
(ATA)T = AT(ATYT = AT A
so AT A is symmetric. B

Theorem 2.17. Let A € R". Then A induces a transformation
Tq:R" = R™
by Ta(v) = Avand T4 € L(R™,R™).
Proof. Leta, € R and v,w € R". We have
Ta(av+ pw) = A(av + fw) = A(av) + A(Bw) = a(AV) + B(AW) = aT4(v) + T4 (W)

so T4 is a linear transformation. B

2.3 Matrices of transformations

Theorem 2.18. For each transformation T € L(R™,R"), there exists a matrix [T] € R
such that
[Tlv="T(v)

forallv e R™. [T]is called the matrix of T w.r.t. the standard basis.

Proof. We claim that
] = |T(e)) T(es) -+ T(en)

works. Let v € R™. There is a unique way of writingvasv =" | a;e;. Then,

n

T(v)=> a;T(e;) =[T]v. W
i=1
U1
Exercise 2.19 (1.3.4 in book). (a) Let T be a linear transformation such that 7" | vy | =

U3

2U1

vy | . What is its matrix?

U3

13



V1 (%)
(b) Repeat part (a) for T |ve| = |v1 + 202
U3 v3 + U1

Answer: Just use theorem 10.3.

0 0 1
() [1] = 0l. ®) [1]= |1 2
1 1 0

S O N
oS = O
_ o O

Exercise 2.20. The rotation of R? about the origin by angle 6 is a linear transformation
pe : R? — R2. Find [py].

1 cos
Solution. =
otuton.  po [O] [sin@

Exercise 2.21. Let R : R? — R? be the reflection over the line y = z. Find [R].

[(1) - é],so[R]

Exercise 2.22 (1.3.10 in book). Is there a linear transformation 7 : R?® — R? such that

and pg

—_

cos sinf cosé

O_ —siné cosf —sinf
= » S0 [pg] =

0
1

01

and R
1 0

Solution. R (1) .n

1 3 1
T ol = o], T|1| =
0 1 0

B~ N

1
LT 1] =
1

W W N
~

If so, what is its matrix?

Solution. We claim that the linear transformation defined by the matrix
3

[T]= {0

1

works. This is easy to verify and easy to write by hand, but hard to typeset so I'll skip that.
|

Note: Since the three vectors given as arguments of 7" are linearly independent, we know
that the answer is yes (without the need to show a [T'].) To find a specific 7', we need to solve
for T'(e;).

Theorem 2.23. Let T € L(V,W). Then T is defined uniquely by its values on a basis.

Proof. Let B = (by,b,,...,by) be a basis and v € V. There is a unique way to write v =

> a;b;. Then,
T(V)=T (Z aibi) =Y aT(b;). m

Corollary 2.24. Let T : V — W and B a basis of V. Then there exists exactly one S €
L(V,W) such that S|p = T|p (that is, S assumes the same values as T on the basis.)

Definition 2.25.
If B = (by,bs,...,by)isabasis of R and 7" € £(R"), then

[T]b’: T<b1) T(bZ) T(bn)

14



is the matrix of T with respect to B. It has the property that

T(v)p = [T]5[V]s-

3 4 2
Example 2.26. From the previous exercise the matrix X = [0 2 3| sends an input
1 4 3
w.r.t. B to an output w.r.t. standard matrix. This is not [T] 5. To et [T] 5, we need to write
0 -1 1
the columns in terms of B as well. Anyway, we havev = |1| = ] so X[v 2
0 3

2.4 Isomorphisms

Definition 2.27.
Let T € L(V,W). Then T is called an isomorphism if T is a bijection. V is isomorphic to
W, denoted V = WV if there exists an isomorphism between them.

Loosely speaking, isomorphic vector spaces are algebraically indistinguishable: they
only differ by what their vectors represent.

Example 2.28. As vector spaces, C = R? with the isomorphism a + bi — (a,b). More
rigorously:
(i) define: Let ¢ : C — R? be defined by ¢(z) = [xl if z =z + iy.
Y
(ii) linear: Then, ifz = 2 + iy, w = u+ iv € C,, 8 € R, then p(az + fw) = p(az + fu +

itoy+ ) = |2 = () + Bew).

(iii) 1-1: If p(2) = p(w) then N(z) = R(w) and I(z) = H(w), so z = w.

(iv) onto: For anyv = € R? we have ¢(z + iy) = v.

Y
Exercise 2.29. T € L(V,W)is1-1iffkerT = {0}.

Solution. (=) If T is 1-1 then for any v € ker T, T(0) = T(v) so 0 = v, so kerT' = {0}.
(<) If kerT = {0} then for any vy, v, with T'(v,) = T(vz), T(vy — Vo) = 0. Therefore
vy — Vs € kerT soitis 0, hencev, =v,. R

2.5 Dimension formula
Theorem 2.30 (Dimension formula). Let T € £(V,W). Then,

dimV = dimkerT + dimimT.

Proof. Let By = (uy,--- ,ug)beabasisofker 7. Extend B; toabasis B = (u,,- - -y, Wy, - -
of V. Then, dim V = dimker T + ¢ so we need to show

We claim that By = (T'(wy), -+ ,T(w¢)) is a basis of im7. If } o;7(w;) = 0 then
T (> a;w;) = 0,50 Y a;wj € ker T. Therefore we can write

Zaiwi — Zﬁjuj =0

15



for some 3;’s. Since B is a basis, it follows that o; = 8; = 0 for all ¢, j, so By is a linearly
independent system.
Now for any y € im T, there exists a x € V with 7'(x) = y. Now we write x = > a;w; +

> Biujtoget T (3 a;wi + > B;u5) =y. This is

> aT(wi) +> BT (w) =y,

butsince u; € ker 7, the second sum vanish soy € span By, soim 7' C span B;. On the other
hand, it is clear that span B, C im T because we can take linear combinations of images of
T in By sospan By =im 7.

Combining all of the above, B is a basis of im 7', so dimim7 = ¢. &

There are also special terms for dim ker 7" and dim im 7": nullity and rank of T', respec-
tively.

Exercise 2.31. If T € £(V') then T is 1-1iff T is onto.

Solution. (=) If T is 1-1 then ker 7" = {0}, so dimker T = 0. By the Dimension formula,
dimim7 = dim V. Now we claim im7T = V. Suppose not, then there is an element v €
V —imT. We can add this to a basis (by, - - - by ) of im T, getting a linearly independent set
of dim V' + 1 vectors in V, which is impossible. Therefore, im T = V, so T is onto.

(<) If T is onto then imT = V, so dimimT = dim V. By the Dimension Formula,
dimkerT = 0sokerT = {0}, hence T"is 1-1. W

Exercise 2.32. Give an example of a function f : R> — R such that
flav) = af(v)

for all @ € R and v € R? but f is not linear.

Solution. We claim that the function f defined as follows works:
T 0 ify#0
! = .
Y x ify=0

Forany o € Rand v = “ € R?,if y = 0 then av =
Y

axr

0] so f(av) = ax = af(v). If

y # 0 then f(av) = 0 = af(v), so f preserves scalar multiplication.

However, we have f ([ﬂ) =0#£1 —f< 1 ) +f< ?]),Sofisnotlinear. [ |

0
Exercise 2.33. Suppose that V is finite dimensional. Prove that any linear map on a sub-
space of V can be extended to alinear map on V. In other words, show that if U is a subspace
of V.and S € L(U, W), then there exists T' € L(V, W) such that 7'(u) = S(u) forall u € U.

Solution. Extend a basis (by,...,by) of U to a basis (by,...,bn, vy, -+, vi) of V. Define T’
by T'(b;) = S(b;), and T'(v;) = 0. Then, for any u € U, write u = >_ a;bj, so

T(u)=> a;T(b;) =Y a;S(by) = S(u). M
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2.6 Testreview

Syllabus for test on linear maps (Thursday Oct 4)

« Definitions: — kernel, image, and bases there-
— Linear transformations for
— kernel and image — matrix of a linear transforma-
— dimension formula tion
— matrix of a linear transforma-
tion » Proofs:
— (1-1, onto) — Show that a map is linear, 1-1,
» Computations: onto

Some review:

Exercise 2.34. Prove that if T'is a linear map from F* to F? such that

ker T = {(x1, 20,23, 74) € F4|z; = 5y and 23 = T2y}

then T is surjective.

Solution.

Note that ((5,1,0,0),(0,0,7,1)) is a basis of kerT’, so dimker 7" = 2. By the Di-

mension formula, dimim7 = 2 = dim F2. Since im T is a subspace of 2, it follows that
imT = F?, so T is surjective. B

Exercise 2.35 (2.3 in book ch.2 review). a. Let T : R® — R™ be a linear transforma-
tion. Are the following statements true or false?

1.
2.

3.
4.

IfkerT = {0} and T'(y) = b, then y is the only solution to T'(x) = b.

If y is the only solution to T'(x) = ¢, then for any b € R™, a solution exists to
T(x)=h.

Ify € R™is a solution to T'(x) = b, it is the only solution.

Ifforany b € R™ the equation 7'(x) = b has a solution, then it is the only solution.

b. For any statements that are false, can one impose conditions on m and n that make
them true?

Solution.

2.

3
4.
2

a. 1. True.IfT(y') =bthenT(y —y)=0s0oy —y=0s0y =Y.
False. If m > nthendimimT < n < msoimT # R™,

. False. For example take the zero map 7'(x) = 0 which is clearly not injective.

False in both interpretations.

. The statement is true for (m,n) iff m < n (vacuously so if m < n). The equation

T'(x) = c has a unique solution iff ker 7' = {0} iff dimim 7" = n.

. No; the zero map is a counterexample for all (m, n).

Depends on the interpretation; the statement “If (for any b € R™ the equation
T'(x) = b has a solution), then it is the only solution.” is true for (m, n) iff m = n.
The statement “For any b € R™, if the equation 7'(x) = b has a solution, then it
is the only solution.” is false for all (m,n).
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Exercise 2.36. Prove that if there exists a linear map on V whose kernel and image are
both finite dimensional, then V is finite dimensional.

Solution. Dimension formula, duh. B

Exercise 2.37. Suppose that I and IV are both finite dimensional. Prove that there exists
a surjective linear map from V onto W if and only if dim W < dim V.

Solution. If there exists a surjective linear map T from V onto W then
dimV =dimkerT +dimim7T = dimker T +dim W > dim V.

On the other hand, if dim V' > dim W, let By = {V4,...,V4mv | be the basis of V, By, =
{Wy,...,Wgimw } be the basis of W. Then, the transformation 7" € £(V, W) defined by
T(v;) =wjfori=1,...,dimW and T'(v;) = o for j > dim W is onto. B

Exercise 2.38. Suppose that V and W are finite dimensional and that U is a subspace
of V. Prove that there exists T € £(V,W) such that ker7 = U if and only if dimU >
dimV — dim W.

Solution. If there exists such a T then, since im 7" C W, by the dimension formula,

dimU = dimkerT =dimV —dimim7 > dimV — dim W.

On the other hand, if dim U > dim V' — dim W, let By be a basis of U, and By be a basis
of V that is an extension of By. Also let By, be a basis of W. The following 7" works: for
allu € By, let T(u) = 0, and for each v € By \ By, let T'(v) be different members of By .
(This is possible as dim W > dimV — dimU.) &

Exercise 2.39. Suppose that U and V are finite-dimensional vector spaces and that S €
L(V,W),T € L(U,V). Prove that

dimker ST < dimker S + dimker 7.

Solution. I'm opting for a more rigorous solution than the one we got in class. Let Br be a
basis of ker T'. Since ker S and im 7" are both subspaces of V, V' = ker SNim T is a subspace
of V as well. Choose a basis By = {vy,Va,...,v,} of V', and pick by, ..., b, € U such that
Tb; =vifori=1,..., 4

Now, suppose that u € U makes STu = 0. Then, Tu € V', so we can write Tu =
S_, @;v;. Now note that foru’ = 3>'_, oy, Tu’ = Tusou’ —u € ker T’ so

u € span (Br U{by,...,b/})
Hence, ker ST C span (Br U {by,...,b}) so
dimker ST < dimker 7T + dim(ker SNim7T) < dimker 7'+ dimker S. W

Exercise 2.40. Suppose that V is finite dimensional and S,7 € £(V'). Prove that ST is
invertible if and only if both S and T are invertible.

Solution. First, note that for any R € £(V), by the Dimension Formula, ker R = {0} iff
im R = V, so both of these are equivalent to R being invertible.
(=) If ST is invertible then im ST = V and ker ST = {0}. Since im ST C im S, im S =
V so S is invertible. Since ker 7" C ker ST, ker 7' = {0} so T is invertible.
(<) If both S and T are invertible then consider 7~ S~1. Since (T~1S~1)(ST) = (ST)(T~1S1),
ST is invertible with 7-1S~1 as its inverse. B
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Exercise 2.41. Suppose that V is finite dimensional and S, T € £(V). Prove that ST =T
ifand only if 7S = I.

Solution. Since ST = I is invertible, T is invertible. Then, T'S = TSTT ' =TT ! = I.

Exercise 2.42. Suppose that T is a linear map from V to R. Prove that if u € V is not in
ker T then
V =kerT @ {aula € R}

Notation: V=UaWifV=U+WandUNW = {0}

Solution. Letn = dimV. Since im7 C R, dimim7 < 1. Since u ¢ kerT, kerT # V so
dimkerT < n — 1. However, by the Dimension Formula,

n=dimV =dimker7 +dimim7 < (n—1)+1=n

sodimker” = n — 1 and dimim 7 = 1. Since u ¢ ker T, neither is au for any a # 0 € R,
so kerT N {aujla € R} = {0}. Let B be a basis of ker7. Then, B U {u} is a basis of
kerT + {auja € R} sodimker7T + {auja € R} =n=dimV sokerT + {auja e R} =V. R
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3 Geometry in R"”

3.1 The dot product

We introduce measures for lengths and angles in R™. In particular, we are interested in
defining orthogonality (right angles).

Definition 3.1.
X1 U1

Letv= | : | andw = | : |. Then, the dot product v - w is defined as

X n :I/N,

n
V:-W= E XTilYi-
i=1

The dot product can easily be seen to be commutative and distributive.

Definition 3.2.
The norm, which is a measure of length, is defined as ||v|| = /v - v. The alternate notation
|v| can be used as well, but this notation is normally reserved for R and C.

Definition 3.3.
The distance between two vectors v, w is the norm of their difference: d(v,w) = ||v — w].

Definition 3.4.
The angle between two vectors v,w Z(v, w) is defined by
VW
cos L(V,W) = —————
I

Now note that this definition would only work if
case—we will prove it later.

First let’s try see it makes sense in R?. Suppose we have two vectors v, w making an
angle 0. By the cosine law, we have

W € [—1,1], and this is indeed the

[w = v[|* = [[wl[* + [IV]* = 2[|v|l[|wl]| cos .

which expands to
2v - w = 2|jv||||w|| cos &

as we wanted.

Let’s prove that In fact this theorem has a familiar name:

HVHHWH

Theorem 3.5 (Cauchy-Schwarz). For any vectors v,w € R",
[v-w| < [[v][[lw]].

Equality holds iff one of v or w is a scalar multiple of the other.

Proof. Ifeither vorwis 0, the statement is obvious, so suppose both are nonzero. Consider
the function ||v + tw||? as a function of t. It is a second-degree polynomial of the form
at? + bt + c:

tw 4 v||? = ||w]|%t? + 2v - wt + ||v].
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This polynomial evidently has at most one root, so its discriminant is < 0, which means
A(v-w)? —4|v|?[w]* <0

, which is what we want! To prove that equality holds only when one of v or w is a scalar
multiple of the other, note that the discriminant equality holds iff the quadratic polynomial
has exactly one root, which means |[tw + v|| is zero for exactly one value of ¢, which means
tw+v=0.1

3.2 Orthogonality and projections

Definition 3.6.
Two vectors v,w € R" are orthogonal, denoted by v L w, if v-w = 0.

Definition 3.7.
A basis of R” in which any two vectors are orthogonal is called an orthogonal basis. If, in
addition, each vector has norm equal to 1, the basis is said to be orthonormal.

Orthogonality and orthonormality is very useful because of the following;:

Theorem 3.8. Letv € R" and (by,b,, - - - ,by) be an o.n.b. (short for orthonormal basis).
Then,

V= zn:(v - by)b;.
i=1

Proof. Letv =3 a;b; for a; € R. We have

V~bj :Zal(blbj) = Oy

i=1

since b; - b; = 1if i = j and 0 otherwise. B

Definition 3.9.
Let P € L£(V) with P? = P. Then, P is called a projection. If, furthermore, P(v) L (P(v) —
v), then P is called an orthogonal projection.

Example 3.10. Some familiar projections include projecting a force onto the direction of
displacement when calculating work in physics.

If a projection P € £(V) is 1-1 / onto (on V) then from P(P(v)) = P(v) so P(v) = vso
P is the identity.

Exercise 3.11 (1.4.24 in book). Let v € R" be a nonzero vector, and denote by v c R"
the set of vectors w € R" such that v-w = 0.

(a) Show that v* is a subspace of R™.

(b) Given any vector a € R", show that a — ﬁv is an element of v-.

(c¢) Define the projection of a onto v+ by the formula
a-v
[V

P, (a)=a— V.

Show that there is a unique number ¢(a) such that (a + ¢(a)v) € v*. Show that

a+t(a)v= Py (a).
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Solution. (a) i. Forany wy,w, € v, wehavev- (w; +W,) =V -wW; + V- W, = 0, 50
w1 + wo € vi.
ii. Foranyw € vt and a € R,wehavev: (aw) = a(v-w) = 050 aw € v=.

Therefore v is a subspace of R”.

(b) Since
[v]|? [v]I> [v]I> 7

it follows that a — ﬁv isin v+.

(¢) i. First,t(a) = — ﬁ works. Now suppose t1, £, are numbers such that both a +¢;v
and a + v are in vt. Then, since v is a subspace, (a + t;Vv) — (a + tov) =
(t; —t2)v € vi. Thismeans 0 = v- (t; — t3)v = (t; — t3)||v||?, but v is nonzero, so
t1 = to.
ii. Since P,.(a)isinv', and it can be written in the form a + tv with ¢ € R, from i.
we have t = ¢(a). B

How is the formula for P,. (a) derived? Since we want an orthogonal projection onto
vt, wehavea — P,. (a) = tvfor some t € R. Now we want (a — tv) - v = 0, and solving this
yields t = H‘:I'l“’z.

Exercise 3.12. Show that P,. is indeed a projection.
Solution. Leta € V. Since P,. (a) € v, v- P, (a) =0, so

PVL (a) -V

PVL (P)VL (a)) = PVL (a) - HV||2

v=~F,.(a). N

Now let’s see how matrices of projections look like.

Example 3.13. Suppose we have v € R? with ||v|| = 1. The matrix of P,. is given by
[PVJ‘ (ei)]?ZI'
V1 1- U%
Let’ssayv = |vq|. Then, P,. (e,) = €, — (€,-V)V = | —vjvy | . This, and similar results
V3 —U1V3

for e, and e3, gives

1-— U% —ViUy  —V1V3
[PVL} = [ —v1V2 1-— U% —V2V3 | = 13 — VVT.
v —vovz 1 — v}
Clearly this generalizes to R™ as well.
a
Exercise 3.14 (1.4.27 in Book). Letv = |b| be a unit vector in R?, so a® + b2 + ¢? = 1.
&

(a) Show that the transformation 7, defined by 7,(v) = v — 2(a - v)a is a linear transfor-
mation R3 — R3.

(b) Whatis T,(a)? If vis orthogonal to a, what is T, (v)? Can you give a name to T,?

(¢c) Write the matrix M of T, (in terms of a, b, c, of course). What can you say of M?2?
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3.3 Determinants

Definition 3.15.
Let a,,...,a, € R". Then, the determinant det |a, --- a,| is defined inductively as

follows:
« Forn =1, det[a] = a.
o For A =det|a, --- an} , define A;; as the matrix obtained from A by deleting row

¢ and column j. Then

det A = a1 det r([ 1 — 4921 det A4~2'1 + -4 (—l)”Jrl(ln,] det 44:[[

Example 3.16. det Z] =a-d—b-c.
C
12 - 3 -2 2 -1 2 -1
Example 3.17. det ([0 3 —2| =1-det —0-det + 2 - det =
9 0 1 0 1 0 1 3 =2

1:3-0-24+2-(-1)=1

Note: you can expand the determinant into any row or column using the above principle.
The signs are determined by the “checkerboard rule”:

Example 3.18. From the last example, using the second column instead of the first also
gives 1. Verification left to the reader.

Some more properties of determinants, given without proof:

» Let P(v,,...,vn) be the parallelogram in R" spanned by the vectors vy, ..., v,. Then
the volume of P(vy,...,vy)is equal to |det[vy, ..., V]|

 det[vy,...,Vvy] is a multilinear and antisymmetric map (R")” — R. In more under-
standable terms, it is linear in each of the arguments vy, . . . , vy, and if you switch any
two arguments, the determinant will be multiplied by —1.

« Itis invariant under transposition, that is, det A = det A” for any square matrix A.
« It is multiplicative, that is, det AB = det A - det B.

Preview: a multilinear, anti-symmetric map ¢ : (R")* — R is called a k-form on R™.

Let us go back to the fact that the determinant is multilinear and antisymmetric again.
What this means is that if any column v; is repeated in the determinant, the determinant
becomes zero as we can swap the v;’s.

Finally, as I feel that it is very useful, even though we didn’t cover it in class, it is worth
knowing the Leibniz form of the determinant:

det A= "sgn(o) f[ iy (i)
. i=1
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3.4 Problems

Let’s go back to Exercise 1.4.27 in the book.
Solution (to 1.4.27). (a) Follows from the linearity of dot products.

(b) Ta(a) = —a;if vis orthogonal to a, T, (V) = v; T, is a reflection.
1—2a® —2ab —2ac
(¢) M=| —2ab 1—2b* —2bc |; M? = I;T? is the identity.
—2ac —2bc  1—2¢2

Exercise 3.19 (1.4.16a in Book). What is the area of the parallelogram with vertices at

(), (2): (), (5)?

det [1 5}
2 1

Exercise 3.20 (1.4.5in Book). Calculate the angles between the following pairs of vectors:

Answer: =9.

1 1 1 1
1 0 1

a. |0], b 7
0 1 -1 1
0 1

. 1 o
Answer: a. arccos —= = 54.74

b. arccos0 = 90°

V2
Exercise 3.21. Normalize the following vectors: |1] , l_gl , 1 =2

4 —5
0 M2
1 o \/% @
Answer: vrd Bl B R v
4 V58 __5
V17 L V31
Since det A= = (det A)~!, matrices with determinant zero are non-invertible.
.
Exercise 3.22. Letv = |2| and let w be a vector such that v-w = 42. What is the shortest
3

w can be? The longest it can be?

Answer: ||w|| can take any value in [3v/14, 00).

3 2z
Solution. Cauchy-Schwarz for the lower bound, attained atw = |6|. Takew = | —z | with
9 14

x — +oo to get ||w|| as large as you want.

Exercise 3.23. Let P be a projection, P € £(V). Show that
a) The identity map I is the only invertible projection.
b) Q =1 — Pisa projection
¢) kerQ =im P and im (Q = ker P.
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Solution. a) Clearly, the identity map is a projection. If a projection P is invertible, then
foranyv e V, P(v) = P~Y(P(P(v))) = P~1(P(v))=vso P =I.

b) Foranyve V,

Therefore, using linearity of P,

Q(Q(v)) =v = P(v) - PtV] + PLPV]] = v — P(v) = Q(V),

so () is a projection.

c) Let Py be a projection. If v € im P, then there is a v/ such that Py(v') = v, so Py(v) =
Py(Py(V')) = Py(V') = v. On the other hand, if Py(v) = vthenv € im Py, sov €
im Py <= Py(v) = v. Using the above, we have

vekerQ < Q(v)=0 < P(v)=Vv < ve€imP
and

veImQ < Q(V)=V < P(V)=0 <= veckerP
soker@Q =im P andim@ = ker P. &

Exercise 3.24 (2.15 in book ch.2 review).

Show that an orthogonal 2 x 2 matrix (this actually means orthonormal) is either a rotation
or a reflection.

Solution. There are two possible forms to an orthogonal 2 x 2 matrix:

a b a —b
b —al’'|b a

for a® + b?> = 1. For the former form, since

R

with \/(az + by)2 + (bx — ay)? = /22 + y2, the matrix describes an isometric involution,
which is a reflection. For the latter form, since a® + > = 1, there exists 6 such that a =
cos #, b = sin 0, the matrix describes the rotation by 4. B

ax + by
bx — ay
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4 Linear regression project

For Hotchkiss class MA661 Linear Algebra. Using the guideline questions, we develop the
theory of linear regression and apply it to create a model predicting body height based on
hand span, foot length, and femur length.

4.1 Introduction

Suppose that we want to model a quantity Y from observed quantities X1, X», . .., X,,. Clearly,
there are as many ways to do this as there are functions f : R? — R. But what if we restrict
the function to be linear? Linear regression is exactly that.

Let’s say we collected N datasets (X1;, X, . . ., Xpi, Y3)Y; as training data for our model

to work on. We want to find coefficients 5y, f1, . . ., 3, such that

p
Y=y = fo+ Zﬂijz‘ (1)

j=i

foreach: = 1,2,..., N. Here v; is the our model’s predicted value. But what exactly does
the ~ symbol mean here? How do we say one approximation (for all N data sets) is better
or worse than another? The answer is that we use the least squares method: we want the
sum of squares of errors
N
> (Vi—u)’ (2)
=1
to be minimized. Looking at what g; expands to, this would be pretty ugly, except that we
have linear algebra to the rescue!
Lety = (Y;)Y, andy = (y;)Y, bevectorsin RV, X = (1,X,,X5,...,.Xp)an N x (p+1)
matrix (where 1 is the vector with all 1’s), and 3 = (8o, 51, - - -, 3)T be a vector of unknown
coefficients in R?*!. Using this notation, (fl) can be written as

y=Xp
and the sum of squares in (B) becomes just
Iy —y1* = lly — X8

With this, we are ready to delve into the theory!

4.2 Theory Questions

1. Explain why the orthogonal projection of the training data y into the column space
of X is a sensible choice for minimizing the total error |y — y/||.

Geometrical intuition tells us that the distance from a point A to another point B on a
line/plane/n-dimensional space is minimized when A B is perpendicular to the line/plane/space,
that is, when B is the projection of A onto the line/plane/space.

Since the column space of X is, by definition, span (1, X, X, ..., X}), which is precisely
all the values y = X 3 can take. Since we want our choice of y to be closest to y, intuitively,
we want y to be the projection of y onto the column space of X.
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2. Show that the rank of X (or dimim X) is equal to the number of linearly independent
columns of X.

Since for a vector v = (vg, vy, ..., v,)T, Xvis simply Z?:o v;Xj (taking X, = 1),im X is
precisely the column space of X. Suppose that the number of linearly independent columns
of X is m, that is, there is a set W of m columns of X that are linearly independent, but
not such a set of m + 1 columns. Therefore, any column X ¢ W can be written as a linear
combination of vectors in W:

Xk: Z Otijj.
X;ew

(else W U {Xy} sould be a linearly independent set of m + 1 columns.) Using this we can
write eachu = >~"_ 7;X; € span (Xo, Xy, ..., Xp) as

u= Z v X5 + Z Vi Z i X5 |

X;ew X gW X;ew

so W spans the column space of X. Therefore W is a basis of im X, which means that
dimim X = m.

3. Argue why it is reasonable to assume that realistic examples of X have full rank (We
say that X has full rank if all columns of X are linearly independent)

If X does not have full rank, there has to be a linear combination

p
Z Oé]‘Xj =0
=0

with coefficients «; not all zero. This means that

P
Z Oéiji =0
7=0

perfectly for all 7 = 1,..., N. In realistic situations where we collect enough data (N is
big enough), there is likely to be at least some error/variance from measurement, so it is
unlikely that there would be a linear combination that is zero foralli = 1,..., N.

4. Forthecasep = 1, but general N, show directly: If X has full rank, X* X is invertible

Let X1 = (Xll,X12, e ,XlN)T. We have

1 X
Ty — 1 1 ... 1 1 Xis _ NN Z%lXU
X1 X2 o0 Xan : : Zi:lei Zz‘:1X12¢

1 Xin

Let S; = Zf\; 1 X1;and So = Y7 X2, Since X has full rank, the X;;’s are not all equal
(else, X111 — X, = o means X does not have full rank.) Hence,

NSy =St = > (Xi—Xy;)> #0.

1<i<j<N
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Therefore, by the formula for inverse of 2 x 2 matrices B XTX is invertible with inverse

1 Sy —51]

NS, — 82 |-S, N

5. For general p, show: If X has full rank, X™ X is invertible.
Consider a vector v € ker X7 X, and let w = Xv. We have
[wl> =w/w=v'XTXv =0,

so w = 0, which means that v € ker X as well. Therefore ker X7 X C ker X. However,
X has full rank, therefore all columns of X are linearly independent, thus ker X = {o}.
Therefore, ker X7 X = {0} as well.

Next we claim that X7 X has full rank. Let co, ..., ¢ be the columns of X7 X. Suppose

that there are real numbers «y, . . ., @, such that
p
Z a;Cj = 0.
=0
Then, the vector o = (g, -+ , ;)7 satisfy X” Xa = 0,s0 a € ker X7 X = a = 0. There-
fore X7 X has full rank.

Now consider the column space im X7 X of X7 X. Since X7 X has full rank, all columns
of X7 X are linearly independent, so dimim X7 X = p + 1. Since X7 X C RP*!, it follows
that im X7 X = RP*!. Therefore, there are vectors uy, up such that

XTXuj = ej
foreach j =1,2,...,p + 1. It then follows that the matrix
U = |:u0 U, - Upgg

makes (XTX)U =1
Observed that
(XTX)U(XTX)=XTX implies (X"X)(UXTX -1)=0.

Since X7 X has full rank, UX7 X — I must be the zero matrix, so UXTX = I as well, so
XTX is invertible (with inverse U).

6. Show: If X has full rank, the solution of X™ (y — X) = 0is 3 = (XTX) 1 xTy.

Since XT(y — Xf) = XT(y - X(X"X)'XTy) = XTy - XTxX(x¥*Xx) X"y = o,
B =(XTX)1XTyis asolution of X7 (y — X3) = 0.
If there are two solutions 8 = 81, 52 to X7 (y — X3) = o then
X'X(Br—B2) =X"(y—XB1) - X" (y— XB) = 0.

Since ker X”X = {o}, it follows that 8, — B, = o, thatis, 31 = f,. Therefore 3 =
(XTX)~1XTy is the solution of XT(y — X3) = 0.

* Shown in class: the inverse of a matrix A = |* Zw where ad — bc # 0is A7 = L { d _b] .

c T ad—bc |—c a
2 Based on Davidac897’s answer in Math.SE at https://math.stackexchange.com/a/3860.
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7. Show that the best-fit model isy = X(XTX)"'XTy, and that H := X(XTX)"1XT
is the matrix of an orthogonal projection.

From R
Xo - (y— X@)
R X, (y—Xp
o=X"(y-Xp)= (y: ) : (3)
Xp - (y - XB)

forany j = 0,...,pwehave Xj - (y — Xj3) = 0soy — X} is orthogonal to every column of
X.
Since X'v can be written as a linear combination of columns of X,

(y— XB)- Xv=0

for all v e RPHL,
We are now ready to show that y = X(X7X)'XTy = XJ3 gives the best-fit model.
Suppose that we have a linear model described by a vector 3’. Then,

ly - X812 = ly—X5)+ ( ) |12 A
(v—x5)+ )) (v=xB)+ (x(8-5)))
= (y-XB)- <y X6)+2 ~X3)- ( (B B)) + (X(B—8) - (X(B—p")

= ||Y—X@H2+0+||X( B2
> ly— X8|

Thereforey = X 3 gives the best-fit model, and since X (B —p') # oforany 5’ # 3, itis the
unique best-fit model as well.
The last thing we need to show is that H is a matrix of an orthogonal projection. First,

since
H? = X(XTX)' XTxxFx) 1XT =
H is a matrix of a projection. Now, using the same method as in question 6., for any vector
veRY,
XT'(Hv-v)= - XT(v-X(XTX)"'X"v) = 0.

Therefore, in the same way as (), Hv — v is orthogonal to every column of X. Since
Hv=X((X"X)"'X"v)
can be written as linear combination of vectors in X, so
Hv-(Hv—-v)=0

so H is a matrix of an orthogonal projection. This ends the theory part.

4.3 Practice Questions

In this part we will apply the theory to predict body height based on hand span, foot length,
and femur length.

29



8. In the Google spreadsheet I provided, anonymously, enter for yourself X; = “hand
span”, Xy = “length of foot”, X3 = “body height”

Done!
9. Copy the collected data into a spreadsheet of your own.
We will use Mathematica; this is done using the following.

In[5]:= raw = Import["/Users/student/Downloads/MA661-2018 Regression.xlsx"][[1]]

Out [6]= {{X1,X2,X3,Y},{Hand(cm) ,Foot(cm) ,Femur (cm) ,Height(cm)},{18.1,25.5,48.,173.},
{18.9,23.4,45.,166.3},{19.2,22.,48.,168.},{19.1,22.3,48.2,166.},{20.3,29.,53.,174.},
{20.4,25.,45.6,173.},{20.5,24.8,43.,179.},{18.7,22.5,54.5,178.},{20.5,23.9,53.5,176. },
{19.5,26.,45.5,173.5},{20.3,26.,46.5,175.},{20.3,25.,53.,185.},{20.,22.,44.,156.},
{20.,26.,48.,174.},{15.7,21.1,45.,170.},{20.5,25.5,47.5,178.5}}

10. Using the above theory, create a linear best-fit model to preduct Y from X, X, and
X3. Use technology as appropriate. Which input provides the best predictor for Y ?

To remove headers, we remove the first two items in raw:

In[6] := data = Delete[Deletel[raw,2],1]

Out[6]= {{18.1,25.5,48.,173.},{18.9,23.4,45.,166.3},{19.2,22.,48.,168.},
{19.1,22.3,48.2,166.3},{20.3,29.,53.,174.},{20.4,25.,45.6,173.},{20.5,24.8,43.,179.%},
{18.7,22.5,54.5,178.},{20.5,23.9,53.5,176.},{19.5,26.,45.5,173.5},{20.3,26.,46.5,175.},
{20.3,25.,53.,185.},{20.,22.,44.,156.},{20.,26.,48.,174.},{15.7,21.1,45.,170.%},
{20.5,25.5,47.5,178.5}}

Looks good! Next we find the vectors X,, X5, X5, for hand span, foot length, and femur
length respectively.

In[9]:= X1=data[[A1l1l,1]];

In[10] := X2=datal[[A1l1l,2]];
In[11]:= X3=datal[[A11,3]];
In[12] := Y=data[[All,4]];

Then we generate the vector X, with all elements being 1. We make sure that X, have
the same length (dimension) as X, by

In[13]:= X0=ConstantArray[1,Length[X1]];
Next we combine X0,X1,X2,X3 to create X.

In[15] := X=Transpose[{X0, X1, X2, X3}];
Finally we find 3 using 8 = (X7 X)~1X7T:

In[17] := beta=Inverse[Transpose([X].X].Transpose([X].Y
Out[17]= {106.816,-0.056452,1.30874,0.733368}

Therefore, we get a best-fit linear model of

y = 106.8161 — 0.056452X, + 1.30874X, + 0.733368X5,
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that is, the height y is predicted from hand span 1, foot length x5, and femur length x5 as
7y = 106.816 — 0.056452x1 + 1.30874x5 + 0.733368x3.

Since the coefficient 1.30874 of foot length is largest, foot length is the best predictor of
height.
Finally, here is a comparison of the predicted height and actual height (all units are cm).

In[27] := comparisonTable=Transpose[{X1,X2,X3,Y,X.beta,Y-X.betal}];
TableForm[Prepend [comparisonTable,{"Hand", "Foot", "Femur", "Height",
"PredictedHeight","Residual"}]]

Out [28]=

Hand Foot Femur Height  Predicted Residual

18.1 25.5 48. 173. 174.369 -1.36886

18.9 23.4 45. 166.3 169.375 -3.07525

19.2 22. 48. 168. 169.726 -1.72619

19.1 22.3 48.2 166. 170.271 -4.27113

20.3 29. 53. 174. 182.492 -8.49208

20.4 25. 45.6 173. 171.825 1.17543

20.5 24.8 43. 179. 169.65 9.34958

18.7 22.5 54.5 178. 175.176 2.82433

20.5 23.9 53.5 176. 176.173 -0.172921
19.5 26. 45.5 173.5 173.111 0.389225
20.3 26. 46.5 175. 173.799 1.20102

20.3 25. 53. 185. 177.257 7.74286

20. 22. 44, 156. 166.748 -10.7476

20. 26. 48. 174. 174.916 -0.915968
15.7 21.1 45. 170. 166.546 3.45419

20.5 25.5 47.5 178.5 173.867 4.63331

The residual sum of squares (RSS) is 412.765, found using the following code:

errbeta=Y-X.beta;
Sum[errbetal[[i]]~2,{i,Length[X1]}]
Out[62]= 412.765

This completes the project.
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5 Row operations

5.1 Introduction

Row reduction is an algorithm for solving systems of linear equations.

Any system of linear equations can be written in matrix form Ax = b. To solve this sys-
tem, only A and b are necessary, therefore it suffices to work with the augmented coefficient
matrix [A | b].

There are three operations that can be performed on this matrix without changing the
solution of the modified system, and can reduce the system to a normal form from which
the solution is immediately apparent. The operations are:

Definition 5.1 (Row operations). « Multiplying a row by a nonzero number
« Adding a multiple of a row onto another row
« Exchanging two rows

and the resulting normal form is called row-reduced echelon form, and it is unique to
the original system.

Definition 5.2.
A matrix is in echelon form if

(i) In every row, the first nonzero entry is 1, called a pivotal 1.
(i) The pivotal 1 of a lower row is always to the right of the pivotal 1 of a higher row
(iii) In every column that contains a pivotal 1, all other entries are 0.

(iv) Any rows consisting entirely of 0’s are at the bottom.

Example 5.3. These matrices are in echelon form:

1 0 0 -3 0130 0 3 0 —4
O 1 0 -2/,/]0 001 -2 1 0 -1
0 01 0 0000 O 01 2
These are not:
1 0 0 2 1 1 0 1
0 0 1 —-1|,]0 0 2 O
01 0 1 0 0 01

Example 5.4. The following is a series of row operations on a matrix, reducing it to an
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echelon form.

1 2 3 1
-1 1 0 2
1 0 1 2

R2—R2+R1
R3—R3—R1

R2—R2/3
e

R1—R1—2R2
R3—R3+2R2

R3—R3/3

Ri—R1+2R3
R2—R2—R3

ocor oo R oo R oo~ oo R

o

2 3 1
3 3 3
2 2 1
2 3 1]
1 1 1
9 2 1
01 -1]
11 1
00 3
01 —1]
11 1
00 1]
01 0
110
00 1

Exercise 5.5. Reduce the following matrices to echelon form:

Solution.

1 2 3 5
2 3 0 -1
01 2 3

R2—R2—4R1
%
R2——R2/3
—>

R1—R1—2R2
_—

R2—R2—2R1
T

R2——R2
_—
Ri1—R1—2R2
R3—R3—R2

R3——R3/4
3——R3/

Ri1—R1+9R3
R2—>R2—6R3
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co~rcorRr ocorRr oo ~o o'

2 3
-3 —6

2 3
1 2

2 3 5
-6 —11
1 2 3
3 95
6 11

—17]




5.2 Applications

Applications of row reduction:

« Solve systems of linear equations, of course

+ Checking linear independence of vectors (vy,Va,...,Vi): row-reduce [v; ---vy| and
see if it reduces to a matrix giving the unique trivial solution. This can also be used to
find bases for kernels.

« Finding inverses of a matrix A: by solving AX = I for X = [x, ---Xy]. Since only the
coefficients matter when row-reducing, we can row-reduce [A | I]. If A is invertible,
this will row-reduce to [I | A~1].

Exercise 5.6. Row-reduce to find the inverse of

1 0 -2
2 -1 0
0 1 3
Solution.
0 —2]1 0 0 1 0 —2|1 0 o0
2 -1 0|0 1 o 2RIy 1 4] 21 0
0 1 3]0 0 1 01 3]0 01
10 —2]1 0 0
Roo—Re, 01 —4)2 -1 0
01 3]0 0 1
10 -2/ 1 0 0
RoR-R2 g1 42 -1 0
00 7|-2 1 1
10 2|1 0 o0
RomRa/T, 01 -4 2 —1 0
00 1|2 12
toof2 2
R1—R1+2R3 01 0 g _%% n
R2—+R2+4R3 00 1 Yy 1 1
L T 7 7

Row operations also have another application:
« Find bases for images:

— Since row operations do not change the set of solutions, columns in the original
matrix are linearly independent iff they are linearly independent in the echelon
form.

— To find a basis of im A, row-reduce A, determine all pivotal columns (containing
a pivotal 1) and select the corresponding columns from A.

Here’s a summary from the book. See more on p.198.

Theorem 5.7 (Linear independence and span; 2.4.5 in book). Let vy, ..., vy be vectors in
R™, and let A be the n x k matrix [v, - - - vi]. Then

(@) V4, ...,vn are linearly independent iff the r.r.e.f matrix A has a pivotal 1 in every
column.

(b) Vi, ...,Vn spans R™ iff the r.r.e.f matrix A has a pivotal 1 in every row.
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5.3 Elementary matrices

Each row operation can also be described as a multiplication by elementary matrices (Def.
2.3.5 in the book)

Definition 5.8.
There are three types of elementary matrices:

« Type 1 elementary matrix E (i, x): the identity matrix I, except that the entry (i, 7) is
z. It corresponds to multiplying row 7 by z.

» Type 2 elementary matrix Es(i, j, ): the identity matrix I, except that the entry (4, j)
is z. It corresponds to adding x times row j to row :

» Type 3 elementary matrix E3(i, j), i # j: the identity matrix I, except that the entries
(i,1),(j,7) are 0 and entries (¢, j), (j,4) are 1. It corresponds to swapping rows ¢ and j.

Clearly, elementary matrices are invertible (and their inverses are obvious) Since ele-
mentary matrices correspond to row operations, every invertible matrix A can be written as
amultiplication of elementary matrices. This is useful theoretically. For example, if we want
to show det AB = det A det B, it suffices to show that det EB = det F det B for elementary
matrices F. Here, Mathematica can be useful in sounding the validity of conjectures to be
proved (= i.e. it’s easy to just try some cases in Mathematica)

6 Eigenstuff

6.1 Change of basis

Come to think of it, there is nothing special about the standard bases in R™. We can easily
work on other bases as well, and we will use the notation x = H to denote x written in

form of the basis B. 7

However, how do we know what happens when we change the basis? Turns out when we
want to change from basis B; to Bs, there is a change of basis matrix [® g, -, g, ] that takes
any [x]p, and returns [X]p,.

Basically, we are finding the matrix of id : R” — R™ w.r.t. the two bases. To do so, take
each vector from B, as input and express the result as linear combinations of vectors in Bs.
The scalars will form the columns of (@5, _, ,]|. This sounds pretty confusing, so let’s work
out an example.

Example 6.1 (Changing basis in R?). To change basis from B; = (vy, V) to By = (Wy, Wa),
we solve

Vi = Q11Wjp+ Q12Wa
Vo = Q21Wp+ Q2oWs
to get
Q11 Q21
[¢)31—>Bz] = .
Q12 Qg2

This is equivalent to row-reducing

251 = 1]l
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The following is not covered in class, don’t cite it in the test!
It is easy to see that this works for R™ as well, and also that it is equivalent to

Op,p, = [Bi][Ba]

This might feel a bit counterintuitive (why not [B;]~![B2]?) but consider this: obviously,
®p, 7 is [B1] and not [B;]~!. Another view: if we change the basis from [By] (standard
basis, = I) to By, it should have the opposite effect of taking the transformation 7' defined
by B; because doing both cancels out: if you change the basis to B; while transforming
everything by the matrix B; as well, you just get the same thing. Back to class notes.

Given T : R” — R™ and matrix [7], how do we find [T]5 ? Answer:

Tp =®p,poT odPp_,p,
)
[Tz = [B]'[T][B]. 4)

Explanation: if you do this on [v] 5, the ®5_, g, take it to B,, where you can apply 7', and
then use ®p,_, p to take it back to B.
More explanation: the function 7'z looks like this

func T_B (v_B: vector_B) -> vector_B {
v = v_B as vector

return T(v) as vector_B

3

and vector_B is not the same ‘datatype’ as vector.
Let’s do a numerical example.

. . . . 1
Example 6.2. Find the rotation matrix by % w.r.t. basis B; = ( [ ] ,

1) et
b I AR I 4]

Whoops we got the same matrix. This makes sense though as B is basically just a rota-

|
‘%M\»—A

R

[E]

tion and scaling of the standard basis.

Equation (6.1) works when we change between any two bases B, B too:

[T, = [®5,-8,[T)5, [®5,-5,] "

How do we classify the matrices that can represent the same transformation? There is a
term for it.

Definition 6.3.
Two matrices S, T are said to be similar if there is an invertible matrix U such that

S=UTU"".
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6.2 Eigenvalues and eigenvectors

Definition 6.4.
Let V be a vector space, U a subspace, T' € (V). Then U is invariant under T'is TU C U. In
other words: if ve U then T'(v) € U.

Exercise 6.5. If U is a 1-dimensional invariant subspace of I, then there exists A € R such
that T, (v) = Avforv e U.

Solution. Let (b) be a basis of U and choose A from T'(b) = Ab. Then, for anyv=ab € U,
T(v)=T(ab)=aT(b)=aXb=)v. R

If we have a basis of B = (by, b,, ..., by) of V satisfying: foralli = 1,. .., n, there exists
a scalar \; such that 7'(b;) = \;b;. What would [T 5 look like?

N OO - 0
0 Xy - 0
Tp=1|. . )
0 0 - A\,

GivenT € L(V),istherea A satistfying 7'(v) = Avforsomev # 0? Let’ssee. If T'(v) = Av
then
(T = A)v=o0,

so T' — A\I has a non-trivial kernel, and is not invertible, so

det(T — \I) =0,
which gives an equation for A\ (which is a polynomial of degree n.) This brings us to the
definition:

Definition 6.6 (Eigenvalues and eigenvectors).
If T € £(V) and there exists v # 0 such that 7'(v) = Av for some )\ € R, then v is called an
eigenvector to eigenvalue \.

Note that each eigenvector spans a 1-dimensional invariant subspace for 7.

Definition 6.7.
If V has a basis consisting of eigenvectors, this basis is called the eigenbasis.

As always, there is a numerical example.

Example 6.8. To find eigenvalues and eigenvectors of

[t 1]
1 -1
We want
2 — 1
0=det(T — \I) = A =2-N(-1-XA)—-1=X-)-3,
1 —1-X
1++13 . . . 1 .

SO\ = 5 with corresponding eigenvectors L\ 2] (these eigenvectors can be found

by solving (T — A\I)v =0.)
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Theorem 6.9 (Eigenvectors with distinct eigenvalues are linearly independent). If A :

V — Vis a linear transformation, and vy, . . . , Vi are eigenvectors of A with distinct eigen-
values M1, ..., M\, then vy, ..., vy are linearly independent.
Proof (by contradiction, from book). If v,, ..., vy are not linearly independent, then there

is a first vector v; that is a linear combination of the earlier ones. Thus we can write
Vj=a1Vy+ -+ aj-_1Vj_q,

where at least one coefficient is not zero, say a;. Apply ;I — A to both sides to get
7j—1
0= (/\jI — A)VJ = ()\]I — A)(alvl + -4 a]‘,1Vj_1) = Zai()\j — )\i)Vi.
i=1

which is a linear combination of v,,. .., v;_, without all coefficients being zero; this is the
desired contradiction. B

Complex and repeated eigenvalues are studied in the context of Jordan normal forms,
which is beyond the range of this class.

We have been studying eigenvalues without even thinking if they actually exist or not.
Fortunately, they do:

Theorem 6.10. Eigenvalues always exist.

Proof. First, note that we can apply polynomials to square matrices. For any nonzero w &
C", there is a smallest m such that A™w is a linear combination of w, Aw, ..., A" lw.
(Such an m has to exist because C" has finite dimension n.) Write the linear combination
as

agW + a1 AW + - + a1 AW + AW = 0.

Then we can use the coefficients to define a polynomial
p(t) :=ap+art+---+ ™ 4™

which satisfies p(A)w = 0 and is the lowest degree polynomial with this property. (Wow,
this resembles minimal polynomials.)

By FTA, p(t) has at least one root A, so we can write p(¢t) = (¢t — A\)g(¢) for some ¢ with
degq = m — 1. Define v = ¢(A)w. Then,

(A= Av=p(A)w = o,

so Av = Av. Now we only have to check that v # 0, but this is evident from ¢ # 0 and
degq < degp. B

The next question is how to find an eigenvalue. That is easy. Justrowreducew, Aw, ..., A"w.
Use the first non-pivotal column to get a linear combination/polynomial, and use the above.
Mathematica implementation:

a = RandomInteger [{-10, 10}, {7, 7}];
MatrixForm[a]

w = Table[0, {Length[al}];

wl[1]l] = 1;
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paw = Transpose[Table[MatrixPower[a, kl.w, {k, 0, Length[al}]];
rrd = RowReduce [paw] ;

b = rrd[[A11l, -1]]

plt_] := Sum[-b[[i]] t°(1 - 1), {i, 1, Length[b]}] + t~"Length[b]
plt]

lambdal = t /. NSolvelp[t] == 0, t, Reals][[1]]

Eigenvalues[1. a]

qlt_] PolynomialQuotient [p[t], (t - lambdal), t];

qlt]

qcoeff = CoefficientList[q[t], t];

ga = Sum[qcoeff[[i]]*MatrixPower[a, i - 1], {i, 1, Length[qcoeff]}];
v = Normalize[qa.w];

MatrixForm[v]

Eigenvectors[1l. a]

6.3 Spectral Theorem

Let A be a diagonalizable matrix, that is, a matrix similar to a diagonal matrix. It follows
that A has an eigenbasis B where D = [A] 5 is a diagonal matrix. Therefore, for ® = &5, 5,

AP = D = diag (\1,..., \n).
Consider the k™" power of A:
AF = (71D®) = o' DP& D .. . p&F DO = &1 DO = & Ldiag (\F, ... \F)d.

What is e4?

oo . k k
— ¢! (Z dlag(/\lk’l' - An)) o = o 'diag(ey,...,ep)®.
k=0 '

This leads us to the Spectral Theorem, named after the spectral of a matrix, which is the
collection of its eigenvalues. The spectral itself is apparently named after literal spectrum
in physics based on some quantum physics phenomenon.

Theorem 6.11 (Spectral Theorem). Let A be a symmetric n x n matrix. Then, A has an
orthonormal eigenbasis, and all its eigenvalues are real.

6.4 Properties of eigenvalues

Eigenvalues of matrices have several properties:

(i) If X is an eigenvalue of A, then } is an eigenvalue of A~! provided \ # 0 and A~!
exists.

(i) A isinvertible iff 0 is not an eigenvalue of A.
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(iii) If X is an eigenvalue of A then it is an eigenvalue of A”.
(iv) If A is diagonalizable with eigenvalues (A, ..., \,) thendet A = [, \;.
(v) Let A = [a;;] and define trace of Atr (A4) = >""" | a;;. Then, tr (A) = Y7 | A,

The last two properties imply that the trace and determinants are invariant under a change
of basis.

Exercise 6.12. Show properties (i) to (iv) above for general matrices, and (v) for 2 x 2
matrices.

Solution. Here we assume A has size n x n. We will prove (v) for general matrices anyway.
(i) Let vbe an eigenvector to \. We have Av = \v, so

1 -1 -1

X()\V) =A""Av=A""(\v),

hence } is an eigenvalue of A~

(ii) 0is an eigenvalue of A <= thereis a vector v # 0 with Av = 0 <= Ahasa
nontrivial kernel <= A is not invertible (because A is a square matrix)

(iii) For any matrix Ag, ) is an eigenvalue of a matrix Aq iff A is a root of the polynomial
det(Ap — zI). Since (A — x)T = AT — a1,
det(AT — 1) = det(A — zI)T = det(A — zI)

as polynomials, so ) is an eigenvalue of A iff it is an eigenvalue of A7

(iv) Let U be the change of basis matrix from the standard basis to the eigenbasis of A. We
have

H)‘i = detdiag (\y,...,\,) =detUAU ' = detU det AdetU ' = det A.
i1

(v) Consider det(A — zI) as a polynomial in z. In the Leibniz sum of the determinant, the
diagonal term gives

n

[T —2) = (=1)"a" = (=1)" Zaii + p(x)

i=1

for some p with deg p < n—2. As any other permutation misses the diagonal in at least
two rows, and thus has degree < n — 2,

det(A —zl) = (=1)"z" — (=1)" Z ai; + q()

for some ¢ with degq < n — 2. As Ay, ..., \, are the roots of det(A — «T), by Vieta,

i)\v = *_(_1)n Z):?_l Qi = ia” =1trA.
i=1

i=1 (=1
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6.5 Testreview

Suppose we have bases B; = (by,bs), Bs = (¢4, €2).

To find the matrix ® 5, , 5,, we use row reduction:
[B2|B] = [1]@5.m]

This matrix sends a vector v written in B; to the vector v written in Bs, that is, if
a1b1 + a2b2 =V = ﬂlcl + /8202 then

Bl aj
[52] 5 = ¢B1—>B2 [C&Q] 5, :

The matrix for the inverse transformation is simply the inverse matrix:
g8, = P55,
If we have a transformation 7' € £(V') then
[T, = ®B, - 5,[T]B, PB, B, -
Eigenbasis: if By is an eigenbasis for 7" then
[T)p, = diag (A1,..., )

where T'(v;) = \;v; for v; € Bg.
If T is symmetric then Spectral theorem guarantees an orthonormal eigenbasis.

To actually find an eigenbasis, solve det(4 — AI) = 0 for A and find all linearly inde-
pendent eigenvectors for all ;. If all eigenvalues are distinct, we have an eigenbasis.
Also, eigenvectors to distinct eigenvalues are always linearly independent.

If we have repeated eigenvalues, there may or may not be linearly independent eigen-
vectors. For example,

o O O
O O =

1
has 0 as an eigenvalue of multiplicity 3 with |0

0
vector. However, I has 1 as an eigenvalue of multiplicity 3 but with (e,, e., e5) as an
eigenbasis.

as the onlylinearly independent eigen-

—_— o = o

Suppose A has an eigenbasis. We can write A = Udiag (\1,...,\,)U ! for invertible
U. Then,
AR = Udiag (A}, ..., \HU—1
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7 Multilinear algebra

7.1  Quadratic forms

A quadratic form is a homogeneous polynomial of degree 2. For example,
q(z,y, 2) = ciix? + croxy + 1322 + cooy® + cazyz + c332>

is a quadratic form in three variables.
We can relate quadratic forms to vectors and matrices as follows:

1 1
€11 3C12 3C13 €
— 1 1
Q(xayaz)_[x ) Z] 5C12  C22  5C23| |V
1 1
5C13 3C23 (33 z

In general, for a quadratic form ¢, there is a symmetric matrix A/, such that

q(x) = x" M,x.

Definition 7.1 ((posi/negative) (in/semi)definite).
Let ¢(x) be a quadratic form. The ¢ is called

e positive definite if ¢(x) > 0 for all x, and ¢(x) = 0 iff x = 0.
e positive semidefinite if ¢(x) > 0 for all x.

« negative definite if ¢(x) < 0 for all x, and ¢(x) = 0 iff x = 0.
« negative semidefinite if ¢(x) < 0 for all x.

« indefinite otherwise

Clearly, the definiteness of a (real) diagonal matrix M can be determined easily by the
signs of its elements. Therefore, to determine the definiteness of each ¢, we want to write
M, in a basis B which makes it a diagonal matrix.

Since M, is symmetric, the Spectral Theorem guarantees us an orthonomal eigenbasis
B. We show that choosing B works. Since B is orthonormal, ® = &g, _, 5 has orthonormal
columns, so ®7® = I. Set y = ®x. Then,

ga(y) = (@7'y)" (@7 y) =y" [(@7))T A2 ]y
so we want (®71)T A®~! to be diagonal. However, (¢~1)T = (#7)T = @, so
(@ HTAD ™ = DAG ! = diag (\1,..., \n)

is diagonal.

7.2 k-forms

Definition 7.2.
A k-form on R is an anti-symmetric multilinear function (R™)" taking in  vectors and
returning a number. The set of k-forms is donated as A*(R").
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Example 7.3. The 2-form dz; A dz, takes in two vectors and outputs the determinant of
the square matrix formed by the first and second entries of the vectors.

1 3
2 —2 1
dri N dxo R = 3 = -8
-1 1 2 =2
1 2

Exercise 7.4 (6.1.3 in book). Compute the following numbers:

1 1

0 ) 1 1
a) dei Nd = =0.
() X1 T4 1l 1=1 9 9

2 2

(d) dzq A dzo A dzo (something) = 0 because dz, is repeated.

Definition 7.5.
dzq A dxg is an example of elementary k-forms: those of the form

dz;, Ndzi, N Ndxg,, 11 <ig < -+ < 1.

Example 7.6. There are 2* elementary k-forms in R4, corresponding to subsets of {1, 2, 3,4}:
1, dl‘l, e ,d$4, d.l?l/\dl‘g, e ,d1‘3/\d1‘4, dl‘l/\dl‘g/\dxg,, R ,d$2/\dl‘3/\d$4, dl‘l/\dﬂfg/\d$3/\d1‘4.

Since k-forms can be added together or multiplied by a scalar, they form a vector space.
As the last example illustrates, the vector space of k-forms in R" has dimension (}).

Let 2 be a point, and vy, va, ..., vi be vectors in R™. Then, P, (vy,. .., V) is the parallel-
ogram spanned by (vy, . .., vi) attached to point z.
A k-form field in R™ is a set of k-forms in which the scalars depend on (x1,...,z,).

Essentially, it takes a parallelogram in.
Example 7.7. ¢ = 3dz; A dxs is a 2-form; w = e*TYdx A dy is a 2-form field.

Example 7.8. cos(zz)dz A dy is a 2-form field on R3. As an example of evaluation,

1 2
1 2
cos(zz)dx ANdy | P 1 0].,]2 = cos(1 - ) 0 2|~ 2.
1 3

We used the wedge A symbol in our notation for k-forms. This represents a wedge prod-
uct, which has the following formal definition, which I guess comes from the need to make
sure that A preserves antisymmetry as well as multilinearity.

Definition 7.9.
The wedge product of the forms ¢ € A¥(R") and w € A%(R") is the element ¢ A w €
AF+Y(R™) defined by

(PAW)(Vi, Vay oo, Vi) = Z SgN(T)O(Vo(1)s - - s Vo (k) W(Vo(kt1)s - - » Vo(ktt)):
o permutes {1,2,...,k+/¢}
o(l)<--<o(k)
o(k+1)<--<o(k+20)
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Example 7.10. The wedge product of ¢ € A%2(R") and w € A.(R") is
¢ Aw(Vy,Va,V3) = V1, V2)w(Vz) — ¢(Vy, Vg)w(Va) + ¢(Va, V3)w(Vy).

Exercise 7.11 (6.1.11 in book). Let ¢ and ) be 2-forms. Write out ¢ A 1)(Vy, Va, V3, V,).

Answer:

¢ NY(V1,V2,V3,V4) = ¢(Vq, V2)P(V3, Vq) — ¢(Ve, V3) 1 (Va, Vy) + ¢(Ve, V4) 1 (V2, V3)
+ ¢(V2,V3)¢(V17V4) - ¢(V2av4)1/’(v17"3) + ¢(V3,V4)’17[}(V1,V1)
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